
Exam 2 Solutions 

Problem 1. Consider f(x, y) = (xy +y)10 on the square Q = [0, 1]× [0, 1]. Evaluate  � �
fdxdy.

Q 

Solution The function

f(x, y) = (xy + y)10


is continous on R2 . 1
Thus, 

�  
f(x, y)dx is integrable for all y  

0
∈ [0, 1] so one can apply 

Fubini’s Theorem to get: 

 � � � 1 � 1 � 1 �(xy  �1 
+ y)11 � 1 (211  1)y10 

+ )10 2047 
(xy y dxdy = (xy+y)10dxdy = dy = 

−
dy = 

Q 0 0 0 11y 0 0 11 121

Problem 2. Complete the following statement. (There is more than one correct

answer.)

Let S ⊂  Rn be open and connected. Suppose f is a vector field defined on S. Then

f is a gradient field if and only if ——–.


Solution There are two correct answers: 

. . . The line integral of f along a path connecting two points a, b ∈ S is 
independent of the path in S; 

. . . The line integral of f is 0 around every piecwise smooth closed path in S. 

Problem 3. Let γ be the semi-circle connecting (0, 0) and (2, 0) that sits    in the
half plane where y ≥ 0. Given f(x, y) = (2x +cos  y, −x sin y + y7), calculate f · dγ. 
If your calculation requires justification from a theorem we proved in class, state the 
theorem you are using. 

�

Solution Notice that D1f2(x, y) = −  sin y = D2f1(x, y). Since f(x, y) is defined on 
all of R2, which is convex, we conclude f(x, y) is a gradient field. Thus the integral 
of f(x, y) from (0, 0) to (2, 0) is independent of the path. Let us integrate on a 
straight line s : [0, 2] → R2 defined by s(t) = (t, 0): � 2   

(2x+cos y, −x sin y +y 7)ds  = 
�

(2t+cos 0, −t sin 0+07) · , 
2

(1 0)dt = 
�
t2 + t

�
 = 6  
0

C 0 

Problem 4. Consider the surface x2yz + 2xz2 = 6  in  R3 . 
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1. For (x, y) = (1, 4), determine all values of z such that (1, 4, z) is on the surface. 

2. For	 each of the values of z found above, determine at which of the points 
(1, 4, z) one can apply the implicit function theorem. 

3. Choose one point from part (b) where the implicit function theorem can be 
applied and let g(x, y) = z  be the function defined in a neighborhood of (1, 4) 
such that (x, y, g(x, y)) is on the surface. Find ∇g(1, 4). 

Solution


1. By substitution we get 4z +2z2 = 6 or  z2 +2z − 3 = 0. This easily factors into 
(z − 1)(z + 3) = 0 and the zero product property implies z = 1  or  z = −3. 

2. Let f(x, y, z) = x 2yz +2xz2 −  6. Then ∂f
	 = x2y +4xz. And thus ∂f (1, 4, 1) = 

∂z ∂z 

=  4+4 8 = 0, ∂f
 (1, 4, −3) = 4−12 = −8 = 0. Thus, one can apply the implicit 

∂z

function theorem at both points, as the only necessary condition (∂f/∂z = 0)  
has been met. 

3. By the implicit function theorem we know that 
  
∂f ∂f 

∇  ∂y
g = −	

�
∂x , 
∂f ∂f 

�
. 

∂z ∂z 

Since ∂f  
	 = 2xyz + 2z2 , ∂f x2

 = z, wherever g is defined we see 
∂x ∂y

	  �
2xyz + 2z2 x2z ∇g(x, y) =  − , 

 + 4xz 
− 

x2y x2y + 4xz 

�
  

and thus if we defined g in a neighborhood of (1, 4, 1), ∇g(1, 4) = −10
8 , −1

8 = 
(−5/4, −1/8). While if   d of (1  4  −3),  g is defined in a neighborhoo , ,

�
∇g(1, 4) = �−−6 , −−3 

  

�
= (−3/4, −3/8).

�
−8 −8

Problem 5. Assuming the comparison theorem for step functions, prove it for 
integrable functions f, g : U → R. That is,   let 	 U be a closed rectangle  in  R

3 and 
assume	

� � � �
oth exist. If g 

U f, 
U g b ≤ f for all x ∈ U , prove 

� �
g  f . 

U ≤
U 

Solution We proceed by con

� �
  	tradiction. Assume  f, g are both integrable in U and

g ≤ f in U but 
� �

 g >
� �
  f . Let M = 

� �
(g − f). By hypothesis, M > 0.  The 

U U U

Riemann condition implies there exist step functions sg, tg, sf , tf with 

� �
�
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• sg ≤ g ≤ tg and sf ≤ f ≤ tf in U , 
  • 

� �
  tg − sg < M/4, 

� �
 tf − sf < M/4, and 

U U

      • 
� �

sg  ≤ 
� �

 g ≤ 
� �

 tg, 
� �

 sf ≤ 
� �

f
� �

 f   ≤ t . 
u U U U U U

    
Taken together, these imply that 

� �
 g− 

� �
 sg < M/4, 

� �
 fU U

− 
U

Now consider 
     

� �
t

U f > −M/4. 

 � �
sg− 

� �
tf > ( 

� �
g−M/4)+(− 

� �
f M/4) = g  f M/2 = M M/2 > 0. 

U U U U

−
� �

U

−
� �

U 
− −

But since by construction  ≤ tf on  sg U , the comparison theorem for step func
tions implies that 

� �
t

U f ≥ 
� �

 sg. This gives the necessary contradiction. 
U

Bonus. 

1. Let A be a set of content zero and assume B ⊂ A. Prove B has content zero. 

2. Let Ai, i = 1, . . . , n  be sets of content zero. Prove ∪n 
i=1Ai has content zero. 

3. Provide a counterexample to the following statement (and explain it): Let 
{Ai}  

i
∞
=1 be a collection of sets Ai which each have content zero. Then ∪i

∞
=1Ai

has content zero. 

Solution


1. For any ε > 0,  let R  finite collection of rectangles i be a  such that A ⊂ ∪iRi 

and 

2. For a

�
i Area(Ri) < ε. But B ⊂ A implies B ⊂ ∪iRi. 

ny ε > 0,  let Ri 
j, j = 1, . . . , mi, be a finite collection of rectangles such  

that A ⊂ ∪mi Ri and 
�mi Area(Ri ) < ε/n. But then ∪n A n mi i 

i  j =1 j j=1 j i=1 i ⊂ ∪i=1 ∪j=1 Rj

and 
�n �mi 

i=1 j=1 Area(Ri
j ) < ε. Thus, ∪n

i=1Ai has content zero. 

3. Index the rational numbers between [0, 1] by i, and represent each element 
in the set by ri. Let Ai represent the line segment connecting x = 0 and 
x = 1 at height y = ri. Each Ai certainly has content zero as each is a 
function y = f(x), continuous on [0, 1]. But ∪∞ 

i
=1Ai is dense in the rectangle

[0, 1] × [0, 1].


Now, fix ε = 1/2 and suppose there exists a finite collection of rectangles Rj ,
 
j = 1, . . . , m  such that ∪i

∞
 Ai ⊂ ∪m R m
=1 j=1 j with j=1 Area(Rj ) < 1/2. Since

�
3




Area([0, 1] × [0, 1]) = 1, there exists some open ball B ⊂ [0, 1] × [0, 1] such 
mthat B ∩ ∪j=1Rj = ∅. Let x denote the center of the ball B. Notice that 

there exists some rk ∈ Q such that (x, rk) ∈ B. (In fact, there are an infinite 
number of such rk.) Since (x, rk) ∈ Ak we get a contradiction. That is, ∪∞ 

i=1Ai 

is not contained in any finite collection of rectangles with area less than 1/2. 
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