Exam 2 Solutions

Problem 1. Consider $f(x, y)=(x y+y)^{10}$ on the square $Q=[0,1] \times[0,1]$. Evaluate $\iint_{Q} f d x d y$.

Solution The function

$$
f(x, y)=(x y+y)^{10}
$$

is continous on \mathbb{R}^{2}. Thus, $\int_{0}^{1} f(x, y) d x$ is integrable for all $y \in[0,1]$ so one can apply Fubini's Theorem to get:
$\iint_{Q}(x y+y)^{10} d x d y=\int_{0}^{1} \int_{0}^{1}(x y+y)^{10} d x d y=\int_{0}^{1}\left[\frac{(x y+y)^{11}}{11 y}\right]_{0}^{1} d y=\int_{0}^{1} \frac{\left(2^{11}-1\right) y^{10}}{11} d y=\frac{2047}{121}$
Problem 2. Complete the following statement. (There is more than one correct answer.)
Let $S \subset \mathbb{R}^{n}$ be open and connected. Suppose \mathbf{f} is a vector field defined on S. Then \mathbf{f} is a gradient field if and only if \qquad
Solution There are two correct answers:
\ldots The line integral of f along a path connecting two points $\mathbf{a}, \mathbf{b} \in S$ is independent of the path in S;
\ldots The line integral of f is 0 around every piecwise smooth closed path in S.
Problem 3. Let γ be the semi-circle connecting $(0,0)$ and $(2,0)$ that sits in the half plane where $y \geq 0$. Given $\mathbf{f}(x, y)=\left(2 x+\cos y,-x \sin y+y^{7}\right)$, calculate $\int \mathbf{f} \cdot d \gamma$. If your calculation requires justification from a theorem we proved in class, state the theorem you are using.

Solution Notice that $D_{1} f_{2}(x, y)=-\sin y=D_{2} f_{1}(x, y)$. Since $f(x, y)$ is defined on all of \mathbb{R}^{2}, which is convex, we conclude $f(x, y)$ is a gradient field. Thus the integral of $f(x, y)$ from $(0,0)$ to $(2,0)$ is independent of the path. Let us integrate on a straight line $s:[0,2] \rightarrow \mathbb{R}^{2}$ defined by $s(t)=(t, 0)$:
$\int_{C}\left(2 x+\cos y,-x \sin y+y^{7}\right) d s=\int_{0}^{2}\left(2 t+\cos 0,-t \sin 0+0^{7}\right) \cdot(1,0) d t=\left[t^{2}+t\right]_{0}^{2}=6$
Problem 4. Consider the surface $x^{2} y z+2 x z^{2}=6$ in \mathbb{R}^{3}.

1. For $(x, y)=(1,4)$, determine all values of z such that $(1,4, z)$ is on the surface.
2. For each of the values of z found above, determine at which of the points $(1,4, z)$ one can apply the implicit function theorem.
3. Choose one point from part (b) where the implicit function theorem can be applied and let $g(x, y)=z$ be the function defined in a neighborhood of $(1,4)$ such that $(x, y, g(x, y))$ is on the surface. Find $\nabla g(1,4)$.

Solution

1. By substitution we get $4 z+2 z^{2}=6$ or $z^{2}+2 z-3=0$. This easily factors into $(z-1)(z+3)=0$ and the zero product property implies $z=1$ or $z=-3$.
2. Let $f(x, y, z)=x^{2} y z+2 x z^{2}-6$. Then $\frac{\partial f}{\partial z}=x^{2} y+4 x z$. And thus $\frac{\partial f}{\partial z}(1,4,1)=$ $4+4=8 \neq 0, \frac{\partial f}{\partial z}(1,4,-3)=4-12=-8 \neq 0$. Thus, one can apply the implicit function theorem at both points, as the only necessary condition $(\partial f / \partial z \neq 0)$ has been met.
3. By the implicit function theorem we know that

$$
\nabla g=-\left(\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}}, \frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial z}}\right)
$$

Since $\frac{\partial f}{\partial x}=2 x y z+2 z^{2}, \frac{\partial f}{\partial y}=x^{2} z$, wherever g is defined we see

$$
\nabla g(x, y)=\left(-\frac{2 x y z+2 z^{2}}{x^{2} y+4 x z},-\frac{x^{2} z}{x^{2} y+4 x z}\right)
$$

and thus if we defined g in a neighborhood of $(1,4,1), \nabla g(1,4)=\left(-\frac{10}{8},-\frac{1}{8}\right)=$ $(-5 / 4,-1 / 8)$. While if g is defined in a neighborhood of $(1,4,-3), \nabla g(1,4)=$ $\left(-\frac{-6}{-8},-\frac{-3}{-8}\right)=(-3 / 4,-3 / 8)$.

Problem 5. Assuming the comparison theorem for step functions, prove it for integrable functions $f, g: U \rightarrow \mathbb{R}$. That is, let U be a closed rectangle in \mathbb{R}^{3} and assume $\iint_{U} f, \iint_{U} g$ both exist. If $g \leq f$ for all $\mathbf{x} \in U$, prove $\iint_{U} g \leq \iint_{U} f$.

Solution We proceed by contradiction. Assume f, g are both integrable in U and $g \leq f$ in U but $\iint_{U} g>\iint_{U} f$. Let $M=\iint_{U}(g-f)$. By hypothesis, $M>0$. The Riemann condition implies there exist step functions $s_{g}, t_{g}, s_{f}, t_{f}$ with

- $s_{g} \leq g \leq t_{g}$ and $s_{f} \leq f \leq t_{f}$ in U,
- $\iint_{U} t_{g}-s_{g}<M / 4, \iint_{U} t_{f}-s_{f}<M / 4$, and
- $\iint_{u} s_{g} \leq \iint_{U} g \leq \iint_{U} t_{g}, \iint_{U} s_{f} \leq \iint_{U} f \leq \iint_{U} t_{f}$.

Taken together, these imply that $\iint_{U} g-\iint_{U} s_{g}<M / 4, \iint_{U} f-\iint_{U} t_{f}>-M / 4$.
Now consider

$$
\iint_{U} s_{g}-\iint_{U} t_{f}>\left(\iint_{U} g-M / 4\right)+\left(-\iint_{U} f-M / 4\right)=\iint_{U} g-\iint_{U} f-M / 2=M-M / 2>0 .
$$

But since by construction $s_{g} \leq t_{f}$ on U, the comparison theorem for step functions implies that $\iint_{U} t_{f} \geq \iint_{U} s_{g}$. This gives the necessary contradiction.

Bonus.

1. Let A be a set of content zero and assume $B \subset A$. Prove B has content zero.
2. Let $A_{i}, i=1, \ldots, n$ be sets of content zero. Prove $\cup_{i=1}^{n} A_{i}$ has content zero.
3. Provide a counterexample to the following statement (and explain it): Let $\left\{A_{i}\right\}_{i=1}^{\infty}$ be a collection of sets A_{i} which each have content zero. Then $\cup_{i=1}^{\infty} A_{i}$ has content zero.

Solution

1. For any $\epsilon>0$, let R_{i} be a finite collection of rectangles such that $A \subset \cup_{i} R_{i}$ and $\sum_{i} \operatorname{Area}\left(R_{i}\right)<\epsilon$. But $B \subset A$ implies $B \subset \cup_{i} R_{i}$.
2. For any $\epsilon>0$, let $R_{j}^{i}, j=1, \ldots, m_{i}$, be a finite collection of rectangles such that $A_{i} \subset \cup_{j=1}^{m_{i}} R_{j}^{i}$ and $\sum_{j=1}^{m_{i}} \operatorname{Area}\left(R_{j}^{i}\right)<\epsilon / n$. But then $\cup_{i=1}^{n} A_{i} \subset \cup_{i=1}^{n} \cup_{j=1}^{m_{i}} R_{j}^{i}$ and $\sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \operatorname{Area}\left(R_{j}^{i}\right)<\epsilon$. Thus, $\cup_{i=1}^{n} A_{i}$ has content zero.
3. Index the rational numbers between $[0,1]$ by i, and represent each element in the set by r_{i}. Let A_{i} represent the line segment connecting $x=0$ and $x=1$ at height $y=r_{i}$. Each A_{i} certainly has content zero as each is a function $y=f(x)$, continuous on $[0,1]$. But $\cup_{i=1}^{\infty} A_{i}$ is dense in the rectangle $[0,1] \times[0,1]$.
Now, fix $\epsilon=1 / 2$ and suppose there exists a finite collection of rectangles R_{j}, $j=1, \ldots, m$ such that $\cup_{i=1}^{\infty} A_{i} \subset \cup_{j=1}^{m} R_{j}$ with $\sum_{j=1}^{m} \operatorname{Area}\left(R_{j}\right)<1 / 2$. Since
$\operatorname{Area}([0,1] \times[0,1])=1$, there exists some open ball $B \subset[0,1] \times[0,1]$ such that $B \cap \cup_{j=1}^{m} R_{j}=\emptyset$. Let x denote the center of the ball B. Notice that there exists some $r_{k} \in \mathbb{Q}$ such that $\left(x, r_{k}\right) \in B$. (In fact, there are an infinite number of such r_{k}.) Since $\left(x, r_{k}\right) \in A_{k}$ we get a contradiction. That is, $\cup_{i=1}^{\infty} A_{i}$ is not contained in any finite collection of rectangles with area less than $1 / 2$.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

