EXAM 2 - APRIL 15, 2011

Name:

NOTE: If at any point during a calculation you are using a theorem from class, justify the calculation by stating the appropriate theorem.
(1) (10 points) Consider $f(x, y)=(x y+y)^{10}$ on the square $Q=[0,1] \times[0,1]$. Evaluate $\iint_{Q} f d x d y$.
(2) (5 points) Complete the following statement. (There is more than one correct answer.)
Let $S \subset \mathbb{R}^{n}$ be open and connected. Suppose \mathbf{f} is a vector field defined on S. Then \mathbf{f} is a gradient field if and only if -
(3) (10 points) Let γ be the semi-circle connecting $(0,0)$ and $(2,0)$ that sits in the half plane where $y \geq 0$. Given $\mathbf{f}(x, y)=\left(2 x+\cos y,-x \sin y+y^{7}\right)$, calculate $\int \mathbf{f} \cdot d \gamma$.
(4) Consider the surface $x^{2} y z+2 x z^{2}=6$ in \mathbb{R}^{3}.
(a) (3 points) For $(x, y)=(1,4)$, determine all values of z such that $(1,4, z)$ is on the surface.
(b) (6 points) For each of the values of z found above, determine at which of the points $(1,4, z)$ one can find a neighborhood on the surface and a function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the neighborhood can be described by the points $(x, y, g(x, y))$.
(c) (6 points) Choose one point from part (b) where the implicit function theorem can be applied and let $g(x, y)=z$ be the function defined in a neighborhood of $(1,4)$ such that $(x, y, g(x, y))$ is on the surface. Find $\nabla g(1,4)$.
(5) (15 points) Assuming the comparison theorem for step functions, prove it for integrable functions $f, g: U \rightarrow \mathbb{R}$. That is, let U be a closed rectangle in \mathbb{R}^{3} and assume $\iint_{U} f, \iint_{U} g$ both exist. If $g \leq f$ for all $\mathbf{x} \in U$, prove $\iint_{U} g \leq \iint_{U} f$.

BONUS: (6 points)
(a) Let A be a set of content zero and assume $B \subset A$. Prove B has content zero.
(b) Let $A_{i}, i=1, \ldots, n$ be sets of content zero. Prove $\cup_{i=1}^{n} A_{i}$ has content zero.
(c) Provide a counterexample to the following statement (and explain it): Let $\left\{A_{i}\right\}_{i=1}^{\infty}$ be a collection of sets A_{i} which each have content zero. Then $\cup_{i=1}^{\infty} A_{i}$ has content zero.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

