Exam 1 Solutions

Problem 1. (10 points) Consider the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T(1,0,0)=(2,1,4), T(0,1,0)=(4,3,6), T(0,0,1)=(0,-1,2)$.

1. Determine the null space of T.
2. If A is the plane formed by $\operatorname{span}(\{(2,5,-3),(-1,-1,1)\})$, write $T(A)$ in parametric form.

Solution To determine the null space of T, we need to find all vectors \mathbf{v} such that $T \mathbf{v}=\mathbf{0}$. This is equivalent to solving a system of equations. Note that the matrix representation of T is

$$
\left(\begin{array}{ccc}
2 & 4 & 0 \\
1 & 3 & -1 \\
4 & 6 & 2
\end{array}\right)
$$

To solve the system, we row reduce the augmented matrix

$$
\left(\begin{array}{ccc|c}
2 & 4 & 0 & 0 \\
1 & 3 & -1 & 0 \\
4 & 6 & 2 & 0
\end{array}\right) .
$$

This process gives

$$
\left(\begin{array}{ccc|c}
1 & 2 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 2 & -2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

It follows that solutions are of the form $v_{1}+2 v_{3}=0$ and $v_{2}-v_{3}=0$. That is,

$$
N(T)=\left\{\mathbf{v} \in \mathbb{R}^{3} \mid \mathbf{v}=t(-2,1,1) \text { for } t \in \mathbb{R}\right\}
$$

Now, to find $T(A)$ we need to determine $\operatorname{span}\{T(2,5,-3), T(-1,-1,1)\}$. Matrix multiplication immediately gives

$$
T(2,5,-3)=(24,20,32) ; \quad T(-1,-1,1)=(-6,-5,-8) .
$$

Notice that both of these vectors are multiples of $(6,5,8)$. Thus, $T(A)$ is a line through the origin spanned by that vector. In parametric form we have

$$
T(A)=\left\{\mathbf{v} \in \mathbb{R}^{3} \mid \mathbf{v}=t(6,5,8) \text { for } t \in \mathbb{R}\right\}
$$

Problem 2. (10 points) Let

$$
F(t)= \begin{cases}(\sin t,-\cos t) & t \in[0, \pi] \\ (\sin t, \cos t+2) & t \in(\pi, 2 \pi]\end{cases}
$$

1. Find $F^{\prime}(\pi)$, if it is well defined.
2. Find $F^{\prime \prime}(\pi)$, if it is well defined.
3. Determine $\kappa(t)$ everywhere it is defined.

Solution Away from $t=0, \pi, 2 \pi F$ has first and second derivatives in t. Notice that

$$
F^{\prime}(t)= \begin{cases}(\cos t, \sin t) & t \in(0, \pi) \\ (\cos t,-\sin t) & t \in(\pi, 2 \pi)\end{cases}
$$

and

$$
F^{\prime \prime}(t)=\left\{\begin{array}{ll}
(-\sin t, \cos t) & t \in(0, \pi) \\
(-\sin t,-\cos t) & t \in(\pi, 2 \pi)
\end{array} .\right.
$$

I want to highlight here that many of you wrote something like what was above but with closed brackets. Remember the derivative definition requires a left and right hand limit!

Now,

$$
\lim _{t \rightarrow \pi^{+}} F^{\prime}(t)=(\cos \pi,-\sin \pi)=(-1,0)=(\cos \pi, \sin \pi)=\lim _{t \rightarrow \pi^{-}} F^{\prime}(t)
$$

Thus, $F^{\prime}(\pi)=(-1,0)$. Also,

$$
\lim _{t \rightarrow \pi^{+}} F^{\prime \prime}(t)=(-\sin \pi,-\cos \pi)=(0,1) \neq(0,-1)=(-\sin \pi, \cos \pi)=\lim _{t \rightarrow \pi^{-}} F^{\prime \prime}(t)
$$

Therefore, $F^{\prime \prime}$ is not defined at $t=\pi$.
The final part of this problem can be easily solved if you notice that F is carving out two portions of two different circles of radius equal to one. Thus $\kappa(t)=1$ everywhere it is defined.

Problem 3: (10 points) Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$. Prove f is differentiable at $(1,1,1)$ with linear transformation $T(x, y, z)=2 x+2 y+2 z$.

Solution To prove f is differentiable with total derivative T as described we need to show

$$
\lim _{\|\mathbf{v}\| \rightarrow 0} \frac{f(\mathbf{v}+(1,1,1))-f(1,1,1)-T(\mathbf{v})}{\|\mathbf{v}\|}=0
$$

Now observe that

$$
f(\mathbf{v}+(1,1,1))-f(1,1,1)-T(\mathbf{v})=\left(v_{1}+1\right)^{2}+\left(v_{2}+1\right)^{2}+\left(v_{3}+1\right)^{2}-3-2 v_{1}-2 v_{2}-2 v_{3}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}
$$

Thus

$$
\lim _{\|\mathbf{v}\| \rightarrow 0} \frac{f(\mathbf{v}+(1,1,1))-f(1,1,1)-T(\mathbf{v})}{\|\mathbf{v}\|}=\lim _{\|\mathbf{v}\| \rightarrow 0} \frac{\|\mathbf{v}\|^{2}}{\|\mid \mathbf{v}\|}=\lim _{\|\mathbf{v}\| \rightarrow 0}\|\mathbf{v}\|=0
$$

It follows that f is differentiable at $(1,1,1)$ with the total derivative as described.

Problem 4. (15 points) Consider the set $\mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ of all linear maps L from \mathbb{R}^{3} to \mathbb{R}^{2} and define addition of $L, K \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ the following way:

$$
(L+K)(v)=L(v)+K(v) \quad\left(v \in \mathbb{R}^{3}\right)
$$

Define multiplication by a constant c as:

$$
(c L)(v)=c(L(v)) \quad\left(v \in \mathbb{R}^{3}\right)
$$

1. Are the linear maps $L(x, y, z)=(x, 0), K(x, y, z)=(y, 0), N(x, y, z)=(x, y)$ linearly independent? Prove it either way.
2. Find a basis for $\mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$.
3. What is the dimension of $\mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$?

Solution

1. The given maps are linearly independent. Here is why. Suppose $c_{1} L+c_{2} K+$ $c_{3} N=\mathbf{0}$ where here $\mathbf{0}$ is the zero transformation. That is, $\mathbf{0}(x, y, z)=(0,0)$ for all $(x, y, z) \in \mathbb{R}^{3}$. Then $\left(c_{1} L+c_{2} K+c_{3} N\right)(x, y, z)=\left(c_{1} x+c_{2} y+c_{3} x, c_{3} y\right)$. This implies $c_{3}=0$ and thus $c_{1} x+c_{2} y=0$ for all $x, y, \in \mathbb{R}$. Therefore, $c_{1}=c_{2}=0$ as well. Thus, the only linear combination of the three maps that gives the zero map has all coefficients equal to zero.
2. A good basis can be given by the 6 functions $L_{1}^{1}(x, y, z)=(x, 0), L_{1}^{2}(x, y, z)=$ $(0, x), L_{2}^{1}(x, y, z)=(y, 0), L_{2}^{2}(x, y, z)=(0, y), L_{3}^{1}(x, y, z)=(z, 0)$ and $L_{3}^{2}(x, y, z)=$ $(0, z)$.

To check that these maps are linearly independent suppose, that:

$$
\alpha_{1}^{1} L_{1}^{1}+\alpha_{1}^{2} L_{1}^{2}+\alpha_{2}^{1} L_{2}^{1}+\alpha_{2}^{2} L_{2}^{2}+\alpha_{3}^{1} L_{3}^{1}+\alpha_{3}^{2} L_{3}^{2}=0
$$

for some numbers $\alpha_{i}^{j}(1 \leq i \leq 3,1 \leq j \leq 2)$. We would like to prove that all α_{i}^{j} 's are equal to 0 . Remember, that 0 in this vector space was the function defined as $0(x, y, z)=(0,0)$. Then the above equation translates to
$\left(\alpha_{1}^{1} L_{1}^{1}+\alpha_{1}^{2} L_{1}^{2}+\alpha_{2}^{1} L_{2}^{1}+\alpha_{2}^{2} L_{2}^{2}+\alpha_{3}^{1} L_{3}^{1}+\alpha_{3}^{2} L_{3}^{2}\right)(x, y, z)=\left(\alpha_{1}^{1} x+\alpha_{2}^{1} y+\alpha_{3}^{1} z, \alpha_{1}^{2} x+\alpha_{2}^{2} y+\alpha_{3}^{2} z\right)=(0,0)$
for every $(x, y, z) \in \mathbb{R}^{3}$. Substituting $(x, y, z)=(1,0,0)$ to the above equation gives:

$$
\left(\alpha_{1}^{1}, \alpha_{1}^{2}\right)=(0,0)
$$

which means that $\alpha_{1}^{1}=\alpha_{2}^{1}=0$. Similarly substituting $(x, y, z)=(0,1,0)$ gives $\alpha_{2}^{1}=\alpha_{2}^{2}=0$, finally $(x, y, z)=(0,0,1)$ gives $\alpha_{3}^{1}=\alpha_{3}^{2}=0$. This proves that the linear maps $L_{i}^{j}(1 \leq i \leq 3,1 \leq j \leq 2)$ were linearly independent.

To see that the maps $L_{i}^{j}(1 \leq i \leq 3,1 \leq j \leq 2)$ also generate the vector space of linear maps take an arbitrary linear map $K: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$. Let us denote the projections from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ to the first coordinate by π_{1} and to the second coordinate by π_{2}. Thus $\pi_{1}(x, y)=x$ and $\pi_{2}(x, y)=y$. Now $K(x, y, z) \in \mathbb{R}^{2}$, thus the terms $\pi_{1}(K(x, y, z)) \in \mathbb{R}$ and $\pi_{2}(K(x, y, z)) \in \mathbb{R}$ are the first and second coordinates of $K(x, y, z)$, respectively. Consider the linear function:

$$
\begin{aligned}
L & =\pi_{1}(K(1,0,0)) L_{1}^{1}+\pi_{2}(K(1,0,0)) L_{1}^{2}+ \\
& +\pi_{1}(K(0,1,0)) L_{2}^{1}+\pi_{2}(K(0,1,0)) L_{2}^{2}+ \\
& +\pi_{1}(K(0,0,1)) L_{3}^{1}+\pi_{2}(K(0,0,1)) L_{3}^{2}
\end{aligned}
$$

then

$$
\begin{aligned}
L(x, y, z)= & \left(\pi_{1}(K(1,0,0)) L_{1}^{1}+\pi_{2}(K(1,0,0)) L_{1}^{2}+\right. \\
& +\pi_{1}(K(0,1,0)) L_{2}^{1}+\pi_{2}(K(0,1,0)) L_{2}^{2}+ \\
& \left.+\pi_{1}(K(0,0,1)) L_{3}^{1}+\pi_{2}(K(0,0,1)) L_{3}^{2}\right)(x, y, z) \\
= & \left(\pi_{1}(K(1,0,0) x+K(0,1,0) y+K(0,0,1) z),\right. \\
& \left.\pi_{2}(K(1,0,0) x+K(0,1,0) y+K(0,0,1) z)\right) \\
= & \left(\pi_{1}(K(x, y, z)), \pi_{2}(K(x, y, z))\right)=K(x, y, z) .
\end{aligned}
$$

Thus we could express any linear map K in terms of $L_{i}^{j}(1 \leq i \leq 3,1 \leq j \leq 2)$. So they indeed span the space.
3. There is a 6 element basis, thus the dimension is 6 .

Problem 5. (15 points) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that satisfies the following conditions:

1. For all fixed $x_{0} \in \mathbb{R}$ the function $f_{x_{0}}=f\left(x_{0}, y\right): \mathbb{R} \rightarrow \mathbb{R}$ is continuous and;
2. For all fixed $y_{0} \in \mathbb{R}$ the function $f^{y_{0}}=f\left(x, y_{0}\right): \mathbb{R} \rightarrow \mathbb{R}$ is continuous and;
3. For all fixed $x_{0} \in \mathbb{R}$ the function $f_{x_{0}}$ is monotonically increasing in y, i.e. if $y>y^{\prime}$ then, $f\left(x_{0}, y\right)>f\left(x_{0}, y^{\prime}\right)$.

Prove f is continuous.
Solution This solution will appear later. You'll have another chance to work on it.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

