EXAM 1 - MARCH 4, 2011

Name:

(1) (10 points) Consider the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T(1,0,0)=$ $(2,1,4), T(0,1,0)=(4,3,6), T(0,0,1)=(0,-1,2)$.
(a) Determine the null space of T.
(b) If A is the plane formed by $\operatorname{span}(\{(2,5,-3),(-1,-1,1)\})$, write $T(A)$ in parametric form.
(2) (10 points) Let

$$
F(t)= \begin{cases}(\sin t,-\cos t) & t \in[0, \pi] \\ (\sin t, \cos t+2) & t \in(\pi, 2 \pi]\end{cases}
$$

(a) Find $F^{\prime}(\pi)$, if it is well defined.
(b) Find $F^{\prime \prime}(\pi)$, if it is well defined.
(c) Determine $\kappa(t)$ everywhere it is defined.
(3) (10 points) Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$. Prove f is differentiable at $(1,1,1)$ with linear transformation $T(x, y, z)=2 x+2 y+2 z$.
(4) (15 points) Consider the set $\mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ of all linear maps L from \mathbb{R}^{3} to \mathbb{R}^{2} and define addition of $L, K \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ the following way:

$$
(L+K)(v)=L(v)+K(v) \quad\left(v \in \mathbb{R}^{3}\right)
$$

Define multiplication by a constant c as:

$$
(c L)(v)=c(L(v)) \quad\left(v \in \mathbb{R}^{3}\right)
$$

(a) Are the linear maps $L(x, y, z)=(x, 0), K(x, y, z)=(y, 0), N(x, y, z)=$ (x, y) linearly independent? Prove it either way.
(b) Find a basis for $\mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$.
(c) What is the dimension of $\mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$?
(5) (15 points) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that satisfies the following conditions:
(a) For all fixed $x_{0} \in \mathbb{R}$ the function $f_{x_{0}}=f\left(x_{0}, y\right): \mathbb{R} \rightarrow \mathbb{R}$ is continuous and;
(b) For all fixed $y_{0} \in \mathbb{R}$ the function $f^{y_{0}}=f\left(x, y_{0}\right): \mathbb{R} \rightarrow \mathbb{R}$ is continuous and;
(c) For all fixed $x_{0} \in \mathbb{R}$ the function $f_{x_{0}}$ is monotonically increasing in y, i.e. if $y>y^{\prime}$ then, $f\left(x_{0}, y\right)>f\left(x_{0}, y^{\prime}\right)$.

Prove f is continuous.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

