
Notes -on double integrals. 

(Read 11.1-11.5 of Apostol.) 


Just as for the case of a single integral, we have the 


following condition for the existence of a double integral: 


Theorem 1 (Riemann condition). Suppose f -is defined -on 
Q = [arb] x [c,d]. Then f -is integrable -on Q --if and only -if 
given any E > 0, there --are step functions s -and t with -
s < f < t -on Q, such that 

- Let A - -  be a number. - If these step functions - s  - and t satisfy 


-the further condition that 

-then A = 11 f.
Q 


The proof is almost identical with the corresponding proof 


for the single integral. 


Using this condition, one can readily prove the three 


basic properties--linearityr additivity, and comparison--for the 


integral f. We state them as follows: 


Theorem 2. (a) Suppose f -and g -are integrable -on Q. 

--- Then so is cf(x) + dg(x); furthermore, 



(b)  L e t- Q - be subdivided -- i n t o  two rec tangles  Q1 - and 

Q2. -Then f -is  i n t e g r a b l e  over Q ------ i f  and only i f  i t  i s  

i n t e g r a b l e  -- over both Q1 - and Q2; furthermore,  

(c) - I f  f g - on Q, -- and i f  f - and g - a r e  i n t e g r a b l e  

over  - Q, then

TO prove t h i s  theorem, one f i r s t  v e r i f i e s  these  r e s u l t s  

f o r  s t e p  funct ions  (see 11 .3 ) ,  and then  uses t h e  Riemann condi- 

t i o n  t o  prove them f o r  genera l  i n t e g r a b l e  funct ions .  The proofs  

a r e  very s i m i l a r  t o  those  given f o r  t h e  s i n g l e  i n t e g r a l .  

W e  g ive  one of t h e  proofs  a s  an i l l u s t r a t i o n .  For 

example, consider  t h e  formula 

lJQ I f  + = JJ, f + I\Q g,

where f and g are i n t e g r a b l e .  W e  choose s t e p  funct ions  sl, 

s2, tl, t2 such t h a t  J 

s1 C f C tl and S2 C g < t2 

on Q, and such t h a t  



We then find a single partition of Q relative to whi.ch all of 

sl, s2, tl, t2 are step functions; then sl + s2 and tl + t2 

are also step functions relative to this partition. Furthermore, 

one adds the earlier inequalities to obtain 

Finally, we compute 


this computation uses the fact that linearity has already been 

proved for step functions. ~ h u s  JJQ (f + g) exists. TO 

calculate this integral, we note that 

by definition. ' Then


here again we use the linearity of the double integral for step 


functions. It follows from the second half of the Riemann 




conditi.on that (f + g) must equal ;he number 
Q 


up to this point, the development of the double integral 


has been remarkably similar to the development of the single 


integral. Now things begin to change. We have the following 


basic questions to answer: 


(1) Under 

11 	
what conditions does ( f exist? 

"Q 

(2) 	r f  f exists, how can one evaluate. it? 

Q 
( 3 )  Is there a version of the substitution rule for double 

integrals? 


(4) What are the applications of the double integral? 

We shall deal with questions (l), ( Z ) ,  and (4) now, postponing 

question (3) until the next unit. 

I 

Let us tackle question (2) first. How can one evaluate 


the integral if one knows it exists? The answer is that such 


integrals can almost always be evaluated by repeated one-dimen- 


sional integration. More precisely, one has the following theorem: 


Theorem 3 (Fubini theorem). -Let f - be defined - and bounded 

- -  on a rectangle Q = [a rb]  x [c,d], - and assume - that f - is 

integrable - on Q. -- For each fixed y - in [c,d], assume -- that the 

-one-dimensional integral 

exists. --	Then the integral A ( y )  dy exists, 
, 
and furthermore, 

1 



I 
proof. We need to show that [X(y)dy exists and equals 

the double integral ,b f *  


Choose step functions s (x,y) and t(x,y) , defined on 

Q, such that s(x,y) C f (x,y) t(x,y), and 

his w e  can do because f exists. For convenience, choose 

s and t so they are constant on the ?artition lines. (This 


does not affect their double integrals.) Then the one-dimen- 


sional integral 


exists. [For, given fixed y in [c,d], the function s(x,y) 

is either constant (if y is a partition point) or a step 

function of x; hence it is integrable.] Now I claim that the 
b 

function S (y) = s(x,y)dx is a step function on the interval 

c -< y -< d. For there are partitions xo,...,x and yo,.-.,ynm 

of [arb] and [c,d], respectively, such that s(x,y) is 

constant on each open rectangle ( x ~ - ~ , x ~ )x ( ~ ~ - ~ , y ~ ) .Let y
-

and y be any two points of the interval Then 

s(x,y) = s(x.7) holds --for all x. (This is immediate if x is

in x i , x i  ; if x is a partition point, it follows fram 

the fact that s is constant on the partition lines.) here-
I fore 




Hence S (y) is constant on y j y j  so it is a step func- 


tion. 


A similar argument shows that the function 


is a step function for c -< y -< d. 
- . .  

Now since s 5 f 5 t for all (xfy), we have 

j .-
by the comparison theorem. (T3emiddle integral exists by 

hypothesis.) That is, for all y in [c,d], 

Thus S and T are step functions lying beneath and above A, 


respectively, Furthermore 


(see p. 3561, so that .. 
) 



It fo l lows  t h a t  A(y)dy exists, by t h e  Riemann cond i t ion .  

Now t h a t  w e  know A(y) i s  i n t e g r a b l e ,  w e  can conclude 

from a n  e a r l i e r  i n e q u a l i t y  that  

that is, 

! But i t  is a l s o  t r u e  that  

by d e f i n i t i o n .  S ince  t h e  i n t e g r a l s  o f  s and t a r e  less than  

E a p a r t ,  we conclude L l a t  A ( Y )dy and f a r e  w i t h i n  E 

of each o t \ e r .  Because E i s  a r b i t r a r y ,  they  must be equal .  a 
with  t h i s  theorem a t  hand, one can proceed t o  c a l c u l a t e  

some specific double i n t e g r a l s .  Severa l  examples a r e  worked o u t  

i n  1 1 . 7  and 11.8 of  Apostol. 

NOW l e t  us t u r n  t o  t h e  f i r s t  of our  b a s i c  ques t ions ,  t h e  

one concerning t h e  ex i s t ence  of t h e  double i n t e g r a l .  W e  r e a d i l y  

prove t h e  fol lowing : 
i 



Theorem 4 .  - The i n t e g r a l  f e x i s t s  - i f  f - is  

continuous -- on t h e  r e c t a n g l e  Q. 

~ r o o f .  A l l  one needs i s  t h e  small-span theorem of p C. 27 

Given E ' ,  choose a p a r t i t i o n  of Q such t h a t  t h e  span 

of f on each subrec tangle  of t h e  p a r t i t i o n  i s  less than E ' .  

If Q i j  is  a subrec tangle ,  l e t  

= min f ( x )  on Qij: tij = max f (x)  on Qi j .  'i j 

Then tij - s < i E ' .  U s e  t h e  numbers sij and tij t o  o b t a i n  j 

s t e p  funct ions  s and t wi th  s < f G t on Q. One then  has 

JJ*(t - s )  < ~ ' ( d- c ) ( b  - a ) .  

I 

This number equa l s  E i f  w e  begin t h e  proof by s e t t i n g  


E = E/ (d-c) (b-a) . 

I n  p r a c t i c e ,  t h i s  e x i s t e n c e  theorem i s  n o t  nea r ly  s t r o n g  

enough f o r  our  purposes,  e i t h e r  t h e o r e t i c a l  o r  p r a c t i c a l .  W e  

s h a l l  d e r i v e  a theorem t h a t  is  much s t ronger  and more use fu l .  

F i r s t ,  we need some d e f i n i t i o n s :  

Def in i t ion .  I f  Q = [a ,b]  x [c ,d]  i s  a r e c t a n g l e ,  w e  

d e f i n e  t h e  -area o f  Q by t h e  equa t ion  

a r e a  Q.= I\ 1; 
Q 


Of course ,  s i n c e  1 is  a s t e p  funct ion ,  we can c a l c u l a t e  
i 

t h i s  i n t e g r a l  d i r e c t l y  as t h e  product  (d-c) (b-a). 



A d d i t i v i t y  of impl ies  t h a t  i f  we subdivide Q i n t o  

two r e c t a n g l e s  Q1 and Q 2 ,  then 

a r e a  Q = a r e a  Q1 + a rea  Q*. 

Applying t h i s  formula repeatedly ,  w e  s e e  t h a t  i f  one has a p a r t i -  

t i o n  of Q ,  then 

a r e a  Q =  l i , j  a r e a  Q i j ,  

where t h e  summation extends over  a l l  subrec tangles  of  t h e  p a r t i t i o n .  

1t now fol lows t h a t  i f  A and Q a r e  r ec tang les  and 

A c Q,  then a r e a  A a r e a  Q. 

Def in i t ion .  Let  D be a subse t  of t h e  plane.  Then D i s  

s a i d  to  have con ten t  -zero i f  f o r  every E > 0, t h e r e  i s  a f i n i t e  

set of r e c t a n g l e s  whose union con ta ins  D and t h e  sum of whose 

a r e a s  does n o t  exceed E .  

Examples. 

(I) A f i n i t e  set  has  con ten t  zero.  

( 2 )  A h o r i z o n t a l  l i n e  segment has  con ten t  zero. 

( 3 )  A v e r t i c a l  l i n e  segment has  con ten t  zero.  

( 4 )  A s u b s e t  o f  a set of  con ten t  zero  has  con ten t  zero. 

(5) A f i n i t e  union o f  sets of  c o n t e n t  zero  has  con ten t  zero. 

(6) The graph o f  a cont inuous func t ion  

y = $(x); a < x <.b 

i 
has  c o n t e n t  zero.  



( 7 )  The graph of a continuous function 

x = $ ( y ) ;  c G y 9 d  

has content  zero. 

Most of these  statements a r e  t r i v i a l  t o  prove: only t h e  


l a s t  t w o  requ i re  some care.  L e t  us prove ( 6 ) .  Let E '  > 0.  


Given the  continuous function , l e t  us use the  small- 


span theorem f o r  functions of a s ing l e  var iab le  t o  choose a 


p a r t i t i o n  a = xo < x l  < ... < xn. = b of [a,b] such t h a t  t he  

span of $J on each subinterval  is  less than E ' .  Consider t he  

rec tangles  

f o r  i = l, . . . ,n. They cover the  graph of Q ,  because 

1 ( 1  - Q x i 1 < E whenever x i s  i n  the i n t e r v a l  ,xi] . 
The t o t a l  area  of t h e  rec tangles  Ai equals  

( x ~ - x ) 2 € '  = 2 c 1 ( bi-1 - a ) .  
i=l 



T h i s  	number equa l s  E i f  w e  begin t h e  proof by s e t t i n g  

E = 	e/2  (b-a) . 

We now prove an elementary f a c t  about sets of con ten t  zero: 

Lemma 5. - Let  Q - -  be a r ec tang le .  - L e t  D - -  be a subse t  - of 

Q -- t h a t  has con ten t  - zero.  Given E > 0 ,  t h e r e  - -  i s  a p a r t i t i o n  - of 

Q -- such t h a t  those  subrec tangles  -- of t h e  p a r t i t i o n  - t h a t  con ta in  

p o i n t s  - of D - have t o t a l  --- a r e a  l e s s  than  E. 

Note t h a t  t h i s  lemma does no t  s t a t e  merely t h a t  D is 

contained -i n  t h e  union of  f i n i t e l y  many subrectangles  of t h e  par- 

t i t i o n  having t o t a l  a r e a  l e s s  than  E, but  t h a t  t h e  sum of t h e  

a r e a s  o f  -a l l  t h e  subrec tangles  t h a t  con ta in  p o i n t s  of D i s  l e s s

than  E. The fol lowing f i g u r e  i l l u s t r a t e s  t h e  d i s t i n c t i o n ;  D 
i 

is contained i n  t h e  union of two subrec tangles ,  b u t  t h e r e  a r e  

seven subrec tangles  t h a t  con ta in  p o i n t s  of D. 

Proof.  F i r s t ,  choose f i n i t e l y  many r e c t a n g l e s  

A1,...,An of t o t a l  a r e a  l e s s  than  c/2 whose union con ta ins  D. 

"Expandm each one s l i g h t l y .  That is ,  f o r  each i, choose a 

,J 	 r e c t a n g l e  A i  w h o s e i n t e r i o r  c o n t a i n s  Ai, such t h a t  t h e  a r e a  of  

A; i s  no more than  t w i c e  t h a t  of  Ai. Then the union of  t h e  



s e t s  I n t  A i  con ta ins  D ,  and t h e  r ec tang les  A; have t o t a l  

a r e a  l e s s  than  Of course,  t h e  r ec tang le  may extend 

o u t s i d e  Q,  s o  l e t  A: denote t h e  r ec tang le  t h a t  i s  t h e  

i n t e r s e c t i o n  of A: and Q. Then t h e  r ec tang les  A: a l s o  

have t o t a l  a r e a  l e s s  than  E.  

Now use t h e  end po in t s  of t h e  component i n t e r v a l s  of the  

r e c t a n g l e s  AT t o  d e f i n e  a  p a r t i t i o n  P of t h e  r e c t a n g l e  Q. 

See t h e  f i g u r e .  

W e  show t h a t  t h i s  i s  o u r  d e s i r e d  p a r t i t i o n .  

Note t h a t  by cons t ruc t ion ,  t h e  r e c t a n g l e  Aj; is  par t i , t ioned 

by P ,  s o  t h a t  it is  a union of subrec tangles  Qi j  of P. 

Now i f  a subrec tangle  Qij  con ta ins  a p o i n t  of D ,  then  

it con ta ins  a  p o i n t  o f  I n t  A1; f o r  some kt s o  that it a c t u a l l y  

l i e s  i n  % and hence i n  Ai;. Suppose w e  l e t  B denote t h e  union 

of  a l l  t h e  subrec tangles  Qi j  t h a t  con ta in  p o i n t s  of D ;  and l e t  

A be the union of t h e  r e c t a n g l e s  A A Then B C A. 



It follows that 


1 area Qij L
Q~j~~ area Qij*


Q~j~~ 


NOW on the other hand, by additivity of area for rectangles, 


It follows that 


This last inequality is in general strict, because some sub-

rectangles belong to more than one rectangle , so 'i j 

their areas are counted more than once in the sum on the right 


side of the inequality. 


It follows that 


as desired. 0 

Now we prove our basic theorem on existence of the double 

Theorem 6. - If f - is bounded - on Q, and is continuous 


-on Q except on - - - -a set of content --zero, then I/', f exists.




Proof. S t e ~  1.We prove a preliminary result: 


Suppose that given e > 0, there exist functions g and h that are integrable over Q, such 


that 

g(x) I f(x) l h(x) for x in Q 

and 

Then f is integrable over Q. 

We prove this result as follows: Because h and g are integrable, we can find step 

functions sl, s2, tl, t2  such that 

s1 1g 5 t l  and s2 5 h j t2, 

and such that 

Consider the step functions sl and t2. We know that 

s 1 I g l f 1 h 1 t 2  

so sl is beneath f, and t2 is above f. Furthermore, because the integral of g is between 

the integrals of sl and of tl, we know that 

Similarly, 

If we add these inequalities and the inequality 

we have 

Since e is arbitrary, the 'kiemann condition is satisfied, so f is integrable over Q. 



S t e ~2. Now we prove the theorem. Let D be a set of zero content containing the 

discontinuities of f. Choose M so that If(x) 1 5 M for x in Q; then given r > 0, set r t  = 

r/2M. Choose a partition P of Q such that those subrectangles that contain points of D 

have total area less than 6 ) .  (Here we use the preceding lemma.) 

Now we define functions g and h such that g < f < h on Q. If Q.. is one of the 
13 

subrectangles that does not contain a point of D, set 

g(x) = f(x) = h(x) 

for x E Q. .. Do this for each such subrectangle. Then for any other x in Q, set 
1J 

g(x) = -M and h(x) = M. 

T h e n g S f S h o n Q .  

Now g is integrable over each subrectangle Q.. that does not contain a point of D, 
1J 

since it equals the continuous function f there. And g is integrable over each sub- 

rectangle Q.. that does contain a point of D, because it is a step function on such a 
1J 

subrectangle. (It is constant on the interior of Q. ..) The additivity property of the 
U 

integral now implies that g is integrable over Q. 

Similarly, h is integrable over Q. Using additivity, we compute the integral 

JLQ (h-g) = 1J J (h-g) = 2M 1(area Q~ that contain points of D) 
Qij 



Thus the conditions of Step 1hold, and f is integrable over Q. 

Theorem 7. Sup~osef & bounded onQ, and f eauals 0 except on a set D of content 

--zero. Then JJQf exists and ~ Q U ~ Szero 

Proof. We apply Step 2 of the preceding proof to the function f. 

Choose M so that If(x)l 5 M for x in Q; given E > 0, set E' = E / ~ M .Choose a 

partition P such that those subrectangles that contain points of D have total area less 

than E'. 

Define functions g and h as follows: If Q.. is one of the subrectangles that does not 
1J 

contain a point of D, set g(x) = f(x) = 0 and h(x) = f(x) = 0 on Q. .. Do this for each 
1J 

such subrectangle. For any other x in Q, set 


g(x) = -M and h(x) = M. 


T h e n g S f s h o n Q .  

I Now g and h are step functions on Q, because they are constant on the interior of 

each subrectangle Q. .. We compute 
1J 

h = M (1(area Q.. that contain points of D))
JJQ 13 

Similarly, 

E ,  SO that f is integrable over Q. Furthermore, 

Since E is arbitrary, 

Corollary 8. a IJQf exists, and if g g bounded function that eauds f except on a 

-- set of content 



Proof.  + \ We w r i t e  g = f ( g - f ) .  Now f i s  i n t e g r a b l e  

by hypothesis ,  and g - f i s  i n t e g r a b l e  by t h e  preceding 

c o r o l l a r y .  Then g i s  i n t e g r a b l e  and 

Double i n t e g r a l s  extended over  more genera l  regions.  

(Read s e c t i o n  1 1 . 1 2  of Apostol.) I n  t h i s  s e c t i o n ,  

~ p o s t o l  d e f i n e s  [IS f f o r  a  funct ion  f  def ined on a bounded 

s e t  S, bu t  then he  quickly  r e s t r i c t s  himself t o  t h e  s p e c i a l  

case  where S is a region of Types I o r  11. We d i scuss  he re  

t h e  genera l  case .  

F i r s t ,  w e  prove t h e  following b a s i c  ex i s t ence  theorem: 

Theorem 9. - L e t  S be - -  a  bounded set i n  t h e  plane.  I f  
J-Mm,EZ-bn.slLYUll -

Bd S -has con ten t  -zero, --and i f  f -1 i s  continuous --a t  each p o i n t  

-of I n t  S, -then  $JS f e x i s t s .  

-Proof. Let Q b e  a rec tangle  c o n t d h i n g  S. As usual.  

l e t  ? equal f on S, and le t  T equal  0 outs ide  S. Then 
N 

f is  continuous a t  each point  xo of t h e  i n t e r i o r  of S (because 

it equals  f i n  an open b a l l  about xo, and f is continuous 

a t  x0). The funct ion ? is  a l s o  continuous a t  each point  xl 

of t h e  e x t e r i o r  of S, because it equals  ze ro  on an open b a l l  

about xl. The only points  where can' fail t o  b e  continuous 

are po in t s  of ths boundary of S,  and this set, by assumption, 

has content  zero. Hence f! e x i s t s .  El 
1 Q 




-Note: Adjoining or deleting boundary points of S 

changes the value of f only on a set of content zerol so that 

value of /Js f remains unchanged. Thus )'IS f = /Irnt £1 


for instance. 


Let us remark on a more general existence theorem than 


that stated in Theorem 9. If S is a bounded set, and -


if ~d S has content zero, and if f is continuous on Int S 

* 

except on a set D of content zero, then f exists. For 
-
in this case the discontinuities of the extended function f 

lie in the union of the sets Bd S and D, and this set has 

content zero because both Bd S and D do. 

There are more general existence theorems even than this, 


but we shall not consider them. 


NOW we note that the basic properties of the double 

integral hold also for this extended integral: 

Theorem 10. -Let S - -  be a bounded ---set in the plane. -One 
-- has the following properties: 

(a) Linearity, 


the left side e x i s t s  if the right  s i d e  does. 

(b) Comparison. If f -< g on the  set S t  then 

provided both integrals e x i s t .  



(c) Additivity. Let S = SL U S2. If S1 n S2 has content 
i 

zero, then 

provided the right side exists. 

Proof. (a) Given f, g defined on S, let 2, g equal 

ft gr respectively, on S and equal 0 otherwise. Then 

cl + dg equals cf + dg on S and 0 otherwise. Let Q 

be a rectangle containing S. We know that 

t from this linearity follows. 

(b) Similarly, if f -
< g, then , from which we 

conclude that 

(c) Let Q be a rectangle containing S. Let fl 

equal f on S1, and equal 0 elsewhere. Let f2 equal f 

on S2, and equal 0 elsewhere. Let f3 equal f on Sf 

and equal 0 elsewhere. Consider the function 



it equals f on the set S1 n S2, and equals zero elsewhere. 
I 

Because Sl n S2 has content zero, l/  f4 exists and equals 
Q 


zero. Now 


linearity implies that 


How can one evaluate iIS f when S is a general 

region? The computation is easy when S is a region of type 

I or I1 and f is continuous on the interior of S: one 

evaluates 1 4  f by iterated integration. This result is 

proved on p,  367 of Apostol. 

using additivity, one can also evaluate llS f for 

many other regions as well. For example, to integrate a 


continuous function f over the region S pictured, one can 




break it up as indicated into t w o  regions Sl and S2 that 

i intersect in a set of content zero. Since S1 is of type I 

and S2 is of type 11, we can compute the integrals I[ f 
s,
A. 

and {I f by iterated integration. We add the results to 
s, 

obtain 


-Area.

We can now construct a rigorous theory of area. We 

already have defined the area of the rectangle Q = [a,b] x [c,d] 

by the equation 

area Q = 11 I..
Q 


,I We use this same equation for the general definition. 

Definition. L~-tS be a bounded s e t  in  the plane. We say tha t  S 

is Jordan-measurable i f  Sfs 1 exists ;  i n  t h i s  case, we define 

Note that i f  Bd S has content zero, then S is Jordan-measurable, by 

t:y Theorem 9. The converse also holds; the proof is l e f t  a s  an exercise. 

The area function has the following properties: 

Jordan-

Theorem 11. -Let S -and T be measurable --- sets in the 
-A 

plane. 


(1) (Monotonicity). -If S C T, -then area S < area T. 

(2) (Positivity). Area S 3 0, -and equality holds -if 
-and only if S has-content zero. 



(3) (Additivity) - If S n T - - - -  is a set of content - zero, 

-then S u T ' Jordan-measurable -and

area(SuT) = area S + area T. 

(4) Area S = Area (Int S) = Area (S u Bd S) . 
Proof. Let Q be a rectangle containing S and T. 

Let 

is(x) = 1 for x E S 

= 0 for x ft S. 

Define FT similarly. 

(1) If S is contained in T, then $(x) C lT(x) . 
Then by the comparison theorem, 

area s = Ifs 1 = 11, L < /I,% = j'b I. = area T. 

(2) Since 0 < 1, we have by the comparison theorem, 

0 = 11, 0. 11, 1 = area s, 

for all S. ~f S has content zero, then $1 1 = $1 is = 0 ,  
S Q 

by Corollary 7. 




Conversely, suppose I/ 1 = 0. Then / I  is = 0. 
s Q 


Given E > 0, there must be a step function t 2= is defined 


on Q such that f /  t < E.  Let P be a partition relative 
Q 


to which t is a step function. Now if a subrectangle Qij 

of this partition contains a point of S in its interior, 

then the value of t on this subrectangle must be at least 1. 

~ h u s  these subrectangles have total area less than E .  Now S 

is contained in the union of these subrectangles (of total area 

less than e )  and the partition lines. Thus S has content 

zero. 

(3) Because I!, 1 and $1 1 exist and S n T has 
T 

content zero, it follows from additivity that $1 1 exists 
SUT 

andequals $1 1 + $ $  1. 
S T 


(4) Since the part of S not in Int S lies in Bd S, 


it has content zero. Then additivity implies that 


area S = area(1nt S) + area (S - Int S) 

= area (Int S) . 

A similar remark shows that 


area ( S  u Bd SJ = area (Int S )  + area(Bd S) 

= area (Int S )  . 



L e t  1 Remark. S be a  bounded s e t  i n  t h e  plane.  A 

d i r e c t  way of de f in ing  t h e  a rea  of S ,  without developing 

i n t e g r a t i o n  theory,  is  a s  follows: L e t  Q be a  r ec tang le  con-

t a i n i n g  S. 

Given a  p a r t i t i o n  P of Q ,  l e t  a(P) denote t h e  total .  

a r e a  of a l l  subrec tangles  of P t h a t  a r e  contained & S ,  and 

l e t  A(P) denote t h e  t o t a l  a rea  of a l l  subrec tangles  o f  P t h a t  

con ta in  po in t s  of  S. Define the  i n n e r  -a r e a  of S be t h e  supremum 

of the  numbers a (P) , a s  P ranges over  a l l  p a r t i t i o n s  o f  Q; 

and d e f i n e  t h e  o u t e r  -a r e a  of  S t o  be t h e  infemum of t h e  numbers 

A ( P )  . If t he  i n n e r  a r e a  and o u t e r  a r e a  of S a r e  equal ,  t h e i r  

common va lue  i s  c a l l e d  t h e  -a r e a  of S. 

W e  leave it a s  a  ( n o t  too d i f f i c u l t )  e x e r c i s e  t o  show t h a t  

t h i s  d e f i n i t i o n  o f  a r e a  is  t h e  same as the  one we have given. 

Remark. There i s  j u s t  one f a c t  t h a t  remains t o  be proved 

about our  not ion  of a rea .  W e  w o u l d c e r t a i n l y w i s h  it to  be t r u e  

t h a t  i f  two s e t s  S and T i n  t h e  p lane  a r e  "congruent" i n  t h e  sense  

1 This  f a c t i s  of elementary geometry, then  t h e i r  a r e a s  a r e t h e  same. 



no t  immediate from the d e f i n i t i o n  of a r e a ,  f o r  we used rec tang les  
i 

with s i d e s  p a r a l l e l  t o  the  coordina te  axes t o  form the  p a r t i t i o n s  

on which we based our  not ion  of " i n t e g r a l " ,  and hence of  "area" .  

~t is  no t  immediate, for i n s t ance ,  t h a t  the  r ec tang les  S and T 

p ic tu red  below have t h e  same a r e a ,  f o r  t h e  a r e a  of T i s  def ined  

by approximating T by r e c t a n g l e s  with v e r t i c a l  and h o r i z o n t a l  

s i d e s .  [Of course,  w e  can w r i t e  equat ions f o r  the  curves bound- 

ing  T and compute i ts  a r e a  by i n t e g r a t i o n ,  i f  w e  wish.]  

Proof o f  t h e  invar i ance  o f  a r e a  under "congruence" w i l l  

have t o  w a i t  u n t i l  we s tudy t h e  problem of  change of v a r i a b l e s  

i n  a double i n t e g r a l .  



Ehercises
I 

1. Show t h a t  i f  ISS 1 ex i s t s ,  then Bd S hz-s content zero. 

[Hint: Chwse Q so  tha t  S CQ.  Since S& IS e x i s t s  , there a r e  functions 

s and t t h a t  a r e  s t e p  functions r e l a t i v e  t o  a pa r t i t i on  P of Q, such 

tha t  s <, Is jt o Q and [$ ( t  - s )  < E . Show t h a t  the  subrectangles 

determined by P tk.at contain points of S hzve t o t a l  volume l e s s  than . ] 

2. ( a )  Let S and T be bounded subsets of R~ . Show t h a t  

Bd (S UT) C (Bd SVBd T ) .  Give an example where equal i ty  does not hold . 
(b) Show tha t  i f  S and T a r e  Jordan-measurable, then so a r e  

SVT 	 and S n T ,  and furthermore 

ar.ea(SbT) = a r e a s  + a r e a T  - area ( S n T ) .  

3. Express in terms o f  iterated integrals the double integral 


2 2 x y , where S is the bounded portion of the first 

i 
quadrant lying between the curves x y  = 1 and x y  = 2 and the 

lines y = x and y = 4 x .  ( D o  not evaluate the integrals.) 

2 2 
4. 	 . A solid is bounded above by the surface z = x - y , below 

by the xy-plane, and by the plane x = 2. Make a sketch; 

express its volume as an integral; and find the volume. 

5. Express i n  t e r n  of i t e r a t ed  in tegra l s  the  volume of the  region 

i n  the  f i r s t  a t a n t  of R~ bcunded by: (a) The surfacer  z = xy and 

z = 0 w d  x + 2y + z = 1. (b)  The surfaces  z = xy and z = 0 and 



Let Q denote the rectangle [0,1] x [0,1] in the following exercises. 

@(a) Let f(x,y) = l/(y-x) if x # y, 

f(x,y) = 0 if x = y. 

Does JJQf exist? 

(b) Let g(x,y) = sin (l/(y-x)) if x # y, 

Does JJQg exist? 

@ ~ e t  f(x,y) = 1if x = 112 and y is rational, 
,-

f(x,y) = 0 otherwise 

Show that JJQf exists but J1 f(x,y)dy fails to exist when x = 112. 
0 

I 

@ Let f(x,y) = 1if (x,y) has the form (a/p,b/p), 

where a and b are integers and p is prime, 

f(x,y) = 0 otherwise. 

Show that J J f(x,y)dy dx exists but f does not. 
J J Q  
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