
Linear Spaces 


we have seen (12.1-12.3 of Apostol) that n-tuple space 

has the following properties : V, 

Addition: 


1. 	 (Commutativity) A + B = B + A. 

2. 	 (Associativity) A + (B+c) = (A+B) + C. 

3. 	 (Existence of zero) There is an element -0

such 'that A + -0 = A for all A.

4. 	 (Existence of negatives) Given A, there is a 

B such that A + B = -0.
Scalar multiplication: 


5. 	 (Associativity) c (dA) = (cd)A. 

6. 	 (Distributivity) (c+d)A = cA + dA, 

c(A+B) = cA + cB. 

7. (Multiplication by unity) 1A = A. 

Definition. More generally, let V be any set of objects 

(which we call vectors). And suppose there are two operations on 

V, as follows: The first is an operation (denoted +) that 

assigns to each pair A, B of vectors, a vector denoted A + B. 

The second is an operation that assigns to each real number c 

and each vector A, a vector denoted cA. Suppose also that the 

seven preceding properties hold. Then V, with these two opera- 

tions, is called a linear space (or a vector space). The seven 

properties are called the axioms - -for a linear space. 




There are many examples of linear spaces besides n--tuple space 
i 'n 

The study of linear spaces and their properties is dealt with in a subject called 

Linear Algebra. WE!shall treat only those aspects of linear algebra needed 

for calculus. Therefore we will be concerned only with n-tuple space 

and with certain of its subsets called "linear subspaces" :Vn 


-Definition. Let W be a non-empty subset of Vn ; suppose W 

is closed under vector addition and scalar multiplication. Then W is 

called a linear subspace of V n  (or sometimes simply a subspace of Vn .) 

To say W is closed under vector addition and scalar multiplication 

means that for every pair A, B of vectors of W, and every scalar c, 

the vectors A + B a ~ dcA belong to W. Note that it is automatic that 

the zero vector Q belongs to W, since for any A I W, we have Q = OA. 

Furthermore, for each A in W, the vector -A is also in W. This means 

(as you can readily check) that W is a linear space in its own right (i.e., 
f 

. it satisfies all the axioms for a linear,space). 


S~bspaces of m y  be specified in many different ways, as we shall 
Vn 

see. 


Example 1. The subse t  o f  Vn c o n s i s t i n g  of  the 9- tup le  

alone i s  a subspace of it is  ths "smal le s t  p o s s i b l e "  sub-Vn; 

space. Pad of course V, i s  by d e f i n i t i o n  a subspace of Vn; 

it i s  the " l a r g e s t  poss ib le"  subspace. 

W;ample 2. Let A be a fixed non-zero vector, The subset of Vn 

consisting of all vectors X of the form X = cA is a subspace of . 
'n 

It is called the subspace spanned by A. In the case n = 2 or 3 ,  it can 

be pictured as consisting of all vectors lying on a line through the origin. 




Example 3. Let A and B be given non-zero vectors that are not 


1 parallel. The subset of Vn consisting of all vectors of the form 


is a subspace of V It is called the subspace spanned by A and no B. 

In the case n = 3, it can be pictured as consisting of all vectors lying 

in the plane through the origin that contains A and B. 

- - - A /  

We generalize the construction given in the preceding 


examples as follows: 


Definition. Let S = $A?,  ... a be a set of vectors in Vn . 
A vector X of Vn of the form 

X = c A + 1 1  
... +*
is called a linear combination of the vectors Alr...,A,c . The set W of 
all such vectors X is a subspace of Vn, as we will see; it is said to be 

the subspace spanned by the vectors Al, ...,% . It is also called the 

linear span of A l ,  ...,+ and denoted by L(S). 

Let us show that W is a subspace of Vn. If X and Y 

belong to W, then 



X = clAl + - *  and Y = d A  + * * *  
+ =kAk 1 1  + dkAkf 

I 

for soma scalars ci and di. We compute 


X.+ Y = (cl+dl)A1 f * * *  + (ck+dk)Akr 

ax = (ac ) A  + * * *  + (ack)Akf
1 1 


so both X + Y and ax belong to W by definition. Thus W 

is a subspace of Vn. -

Giving a spanning set for W is one standard way of specifying W. 

Different spanning sets can of course give the same subspace. Fcr example, 

it is intuitively clear that, for the plane through the origin in Example 3, 

any_ two non-zero vectors C and D that are not parallel and lie in this 

plane will span it. We shall give a proof of this fact shortly. 

Example 4. The n-tuple space Vn has a natural spanning set, 


namely the vectors 


(0,0,0,.
I 

En = ..,1). 

These are often called the unit -coordinate vectors in It
Vn. 

is e a s y  to see that they span Vn, for if.X = (xl,...,x ) is n 


an element of V,, then 




In the case where n = 2, we often denote the unit I 
?coordinate vectors El and E2 in V2 by I and 3 ,  

respectively. In the case where n = 3, we often denote El, 

t t

E2, and- E3 by 1, I and respectively. They are pic- 


tured as in the accompanying figure. 


Example 5. The subset W of V3 consisting of all vectors of 

the form (a,b,O) is a subspace of V3. For if X and y 

are 3-tuples whose third component is 0, so are X + Y and 

cX. It is easy to see that W is the linear span of (1,0,0) 

I and (O,l,O). 


Example 6. The subset of V3 consisting of all vectors of the 

form X = (3a+2b,a-b,a+7b) is a subspace of V3. It consists 

of all vectors of the form 

X = a(3,1,1) + b(2,-1,7), 

so it is the linear span of 3 1 ,  and (2,-1,7). 


Example 1, The set W of all tuples (x1,x2,x3.x4) svch that 




is a subspace of Vq . as you can check. Solving this equation for x4 , WE see 

I that a 4-tuple belongs to W if and only if it has the form 

x = (xl, X2, x3, -3x1 + X. - 5 ~ ~ ) .  2 

where xl acd x, and x3 are arbitrary. This element can be written in the form 

L 

It follaris that (1,O.O.-3) and (OtlrOtl) and (O,Ofl,-5) sy:an W. 


Exercises 


1. Show that the subset of V3 specified in Example 5 is a subspace 


of V-. Do the same for the subset of V4 s~ecifiedin Example 7. What can 

3 

you say about the set 'of all x ,...x such that alxl+ .. . + a x = 0 n n n 

in general? (Here we assume A = (al....,a ) is not the zero vector.) Csn you n

give a geometric interpretation? 

2. In each of the following, let W denote the set of 
I 
I all vectors (x,y,z) in Vj satisfying the condition given. 

(Here we use (x,y,z) instead of (xl,x2,x3) for the general 

element of V3.) Determine whether W is a subspace of Vj .  

If it is, draw a picture of it or describe it geometrically, 

and find a spanning set for W. 


(a) x =  0. (e) x = y  or 2 x = z .  

(b) x + y = O .  

( f )  x2 - y2 = 0. 


(c) X + y = 1. 2 ( 4 )  X 2  + *  = 0 -

(dl x = y and 2x = 2. 

3. Consider the set F of all real-valued functions 


defined on the interval [arb]. 




(a) Show that F is a linear space if f + g 
denotes the usual sum of functions and cf denotes the usual 

product of a function by a real number. What is the zero 

vector? 

(b) Which of the following are subspaces of F? 


(i) All continuous functions. 


(ii) All integrable functions. 


(iii) All piecewise-monotonic functions. 


(iv) All differentiable functions. 


(v )  All functions f such that f(a) = 0. 

(vi) All polynomial functions. 


Ljnear independence 


-Dc?finition. We say that the set S = I A ~ ,...,q;\ of vectors of vn 

spans the vector X if X belongs to L(S), that is, if 

X = c A + ... + ck+1 1  


for some scalars ci. If S spans the vector X, we say that S spans X 


uniquely if the equations 


X = ciAi and 
i=l 

imply that ci = di for all i. 

It is easy to check the following: 

Theorem 1,Let S = < A ~ ,.. . be a set of vectors of Vn; let 

X be a vector in L(S). Then S spans X uniquely if and only if S spans 

i the zero vector 2 uniquely. 



Proof. Mte that -0 = 2OAi . This means that S spans the zero 
i 

vector uniquely if and only if the equation 


implies that ci = 0 for all i. 

Stippose S syms 2 uniquely. To show S spans X uniquely, suppose 

k 
X = c.A. and X =  2 dilli. 

1=1 1 1  i=l 

Subtracting, we see that 

whence ci - d. = 0, or c = di , for all i. 

1 i 

Conversely, suppose S spans X uniquely. Then 


for some (unique) scalars x Now if i' 

it follows that 


Since S spans X uniquely, we must have xi = x + ci , or c = 0, for all 1. 0 i i 

This theorem implies that if S spans one vector of L(S) uniquely, 


then it spans the zero vector uniquely, whence it spans every vector of L(S) 


uniquely. This condition is important enough to be given a special name: 


Definition. The set S = ZA] ,...,%J of vectors of V is said to n 

be linearly independent (or simply, independent) if it spans the zero vector 

I 
uniquely. The vectors themselves are also said to be independent in this 



situation. 


If a set is not independent, it is said to be dependent. 


Banple 8. If a subset T of a set S is dependent, then S itself 


is dependent. For if T spns Q ncn-trivially, so does S. (Just add on the 


additional vectors with zero coefficients.) 


This statement is equivalent to the statement that if S is independent, 

then so is any subset of S. 

Example 9. Any set containing the zero vector Q is dependent. For 


example, if S = A ~ , . . . ,  arid A1 = 0, then 

Example The unit coordinate vectors E1,...,En in Vn span Q 

uniquely, so they are independent. 

Pample & Let S = A , .i .. . If the vectors Ai are non-zero 

and mutually orthogonal, then S is independent. For suppose 

Taking the dot product of both sides of this equation with A1 gives the equation 


0 = C1 AlOA1 

(since A. *A1 = 0 for i # 1) . NGW A1 1 
 # Q by hypothesis, whence A1 *A1 # 0,

whence cl = 0. Similarly, taking the dot product with Ai for the fixed index 
2 


j shows that c = 0. 
j 


Scmetimes it is convenient to replace the vectors by the vectors 
Ai 

Bi = A ~ / ~ I A ~ ~ \  . Then the vectors B1,...,Bk are of & length and are mutually 

orthogonal. Such a set of vectors is called an orthonormal set. The coordinate 

vectors E l form such a set. n 


B.mple A set ccnsisting of a single vector A is independent 




if A # Q. A set consisting of two non-zero vectors ARB is independent if and 
I 

only if the vectors are not parallel. More generally, one has the following result: 

Theorem 2- The set S = { A ~,. . .,\I is independent if and only if none 

of the vectors Aj  can be written as a linear combination of the others. 

Proof. Suppose first that one of the vectors equals a linear 


combination 06 the others. For instance, suppose that 


Al = c2A2 + * * *  + ckAk: 

then the following non-trivial linear combination equals zero: 


.. .... Conversely, if 

where not all the ci are equal to zero, we can choose m so 


that cm # 0, and obtain the equation 

where the sum on the right extends over all indices different 


from m. 


Given a subspace W of Vnr there is a very important relation that 

holds between spanning sets for W and independent sets in W : 

Theorem 21 Let W be a subspace of Vn that is spanned by the k 

vectors A1, ...,\ . Then any independent set of vectors in W contains at most 

k vectors. 

i 



Proof. Let B ,...,B be a set of vectors of W; let m 2 k. We 

wish to show that these vectors are dependent. That is, we wish to find 

scalars xl,...,x m '  ---nc;t all zero, such that 


Since each vector B belongs to W, we can write it as a linear combination of 


the vectors Ai . 
j 
We do so, using a "double-indexing" notation for the coefficents, 

as follows: 


Multiplying the equation by x and summing over j, and collecting terms, we 

j 


have the equation 


In order for <x .B to equal 2 , it will suffice if we can choose the x 
j j 


so that coefficient of each vector Ai in this equation equals 0. Ncw the 


are given, so that finding the x. is just a matter of solving a 

numbers aij 3 
(homogeneous) system consisting of k equations in m unknowns. Since m > k, 

there are more unknowns than equations. In this case the system always has a non-trivial 

solution X (i.e., one different from the zero vector). This is a standard fact 

about linear equations, which we now prove. a 
First, we need a definition. 

Definition. Given a homogeneous system of linear equations, as in (*)  

following, a solution of the system is a vector (xl,...,x ) that satisfies n

each equation of the system. The set of all solutions is a linear subspace of 

V (as you can check). It is called the solution space of the system. 
n


/ 



It is easy to see that the solution set is a subspace. If we let 


be the n-tuple whose components are the coefficerts appearing in the 


jth equation of the system, then the solution set consists of those X 


~ u c h  that A . * X  = 0 for all j. If X and Y are two solutions, then 
J 

and 

Thus X + Y and cX are also solutions, as claimed. 

Theorem 4. Given a bornogeneous system of k linear equations 
I in n utlknow~ls. If k is less than n, then the solution space con- 

tains some vector other t2ian 0. 

I'ronf.. We are concer~tcd here only v i th  proving the existence of some 
solutioli otlicr tJta11 0, not with nctt~nlly fitidirtg such a solution it1 practice, 
nor wit11 finditig all possildd solutiot~s. (We 11-ill study the practical prob- 
lem in nnuch greater rlctail in a later scctioti.) 

We start  with a system of lc ecluatio~is in ?t uriknowns: 

Our procedure 11411 1)c to reduce tlic size of this system step-by-step by 
elimitit~ting first XI, tlleri x2, and so on. After k - 1 steps, we mil1 be re- 
duced to solvitig just one cqt ta t io~~ and this will be easy. But a certain
nmount, of care is ticeded it1 the dcscriptiorl-for instance, if all = . . = 
akl = 0, i t  is nonset~se to spcak of "elirninnting" XI, since all its coefi-
cierits are zero. \Ve I~ave  to  a l lo~ i~  for this possibility. 

'L'obegirt then, if all the cocflicic~tts of st are zero, you may verify tha t  
the vector ( fro ,. . . ,0) is n solution of the system which is different from 
0 ,  and you nre done. Othcr~risc, a t  Icast one of the coefiicielits of st is 
nonzero, attd 1t.e rncly s~tj~poscfor cortvetlier~ce that  the equations have 
beerr arranged so that  this happetls ill the first ec~uation, with the result 
that  0 1 1  + 0. We rnultiply the first crlt~ation 1)y the scalar azl/afl and then 
suhtract i t  from the second, eli~nitiat~itlg tghe XI-term from the second 
et~uatiori. Si~rtilarly, we elirninatc the xl-term in each of the remaining 

1 equations. 'I'he result is a ttcw system of liriear equatioris of the form 



Now any soltttiolr of this 11c1v ssystoc~n of cqttntiol~s is also a solution of the 
old system (*), because we cat1 recover the old system from the new one: . 

we merely multiply the first erlttatiorl of tlre systcm (**) by the same 
scalars we used before, aild.then tve add i t  to the corresponding later 
equations of this system. 

The crucial ttlirig about what n c  hnve done is contained in the follorvirlg 
statement: If the smaller system etlclosed in the box above has a solution 
other than the zero vector, tlictr thc Ia>rgcr system (**) also has a solution 
other than the zcro ~ c c t o r  [so tJ1lnt the origitinl system (*) tve started 
wit21 llns a solutio~lo t l~crthan the zcro vcctor). $Ire prove this as follows: 
Sr~ppose(d2, . . . , d.,) is a solutiolr of t l ~ o  stna1.ller system, different from 
, . . . ,. We su1)stitutc itito tllc first equation and solve for XI, thereby 
obtailiirlg the follo~ving vector, 

w1ricI1 yo11 may verify is a so l~~ t~ ionof t,hc Iargcr systcm (**). 
In this v a y  we havc rc!clnc:e~l tlio sixo of our problcrn; we now tlccd only 

to prove otir ttlcorcrn for a sysf,ern of Ic - 1 ecluntions in n - 1unknowns. 
If ~ v c  apply this reductio~l n scct)~~ci tilnc, tve reduce the prol~lem to prov- 
ing the theorem for a systern of k - 2 ccl~tatiol~sin n - 2 unkno~v~rs.Con-
tinuing in this way, after lc - 1 eIimiriation steps it1 

+ 
all, we will be down 

to a system cot~sistitig of orlly one ecll~nt,ion, it1 n - k 1unlrno~vns.Now 
n - Ic + 1 2 2, because IVC ass~trnedns our hypothesis that  n > Ic; thus 
our problem retluccs to  proving the follo~trillg ststemcrrt: a "system" con- 
sistitig of otze li~icnrhornogcneous ccluntion it1 two or ntore unkno~vrlsalways 
has a solutioll other than 0. 

WE!leave it to you to show that this statement holds.(Be sure you 


ccnsider the case where one or more or all of the coefficents are zero.) a 

-E2ample 13. We have already noted that the vectors El,...,E span all n 

of Vn. It. follows, for example, that any three vectors in V2 are dependent, 


that is, one of them equals a linear combination of the others. The same holds 


for any four vectors in The accompanying picture ~ k e s  these facts plausible. 
Vj. 
I 



Similarly, since the vectors Elt..-,E are independent, any spanning 
n 


set of Vn must contain at least n vectors. Thus no two vectors can span 

V3' 

and no set of three vectors can span v4 
.

Theorem 5. Let W be a subspace of Vn that does not consist of 


-0 alone. Then: 

(a) The space W has a linearly indepehdent spanning set. 

(b) Any two linearly independent spanning sets for W have the same 

> 

number k of elements; k < n  unless W is all of Vn. 


-- Proof. (a) Choose A1 # - 0 in W. Then the set {A1> is independent. 

In general, suppose A l .  A is an independent set of vectors of W. If 

this set spans W, we are finished. Otherwise, we can choose a vector Ai+l 

of W that is not in L(Alr.. .,A.) . Then the set 1A1, ...,A A~+~] is 
1 i' 

independent: For suppose that 

for some scalars c not all zero. If c ~ + ~  = 0 ,  this equation contradicts i 

independ ecce of A , ..A r while if c ~ + ~# 0, we can solve this equation 

for A contradicting the fact that Ai+l does not belong to L(Alt....A,).
1 


Cc~ntinuing the process just described, we can find larger and larger 


independent sets of vectors in W. The process stops only when the set we obtain 


spans W. Does it ever stop? Yes, for W is contained in Vn, ar;d V contains 
n 



i 

no more than n independent vectors. Sc, the process cannot be repeated 


indefinitely! 


(b) Suppose S = IA~,.. . \\ and T = B ... B are two 

ljnearly independent spanning sets for W. Because S is independent and T 

spans W, we must have k <_ j , by the preceding theorem. Because S sy:ans 

W and T is independent, we must have k z j .  Thus k = j. 

Nclw Vn contains no more than n independent vectors; therefore we 

must have k 5 n. Suppose that W is not all of Vn. Then we can choose 

a vector 2$+1 of Vn that is not in W. By the argument just given, the 

set A ...+ is independent. It follows that W1 < n, so that k in. 0 

Definition. Given a subspace W of Vn that does not consist of Q 

alone, it has a linearly independent spanning set. Any such set is called a 

) basis for W, and the number of elements in this set is called the dimension of W. 

We make the convention that if W consists of -0 alone, then the dimension of 

W: is zero. 


Example 14. The space Vn has a "naturaln basis consisting of the 

vectors E1,...,E . It follows that Vn has dimension n. (Surprise!) There n 


are many other bases for Vn., For instance, the vectors 


form a basis for V,, as you can check. 


I 
I 



~xercises 


1 	 1. Consider the subspaces of V3 listed in Exercise 2, p. A6. Find bases for 

each of these subspaces, and firid spanning sets for them that are -not bases.

2. 	 Check the details of Example 14. 

3. Suppose W has dimension k. (a) Show that any independent set in 


w consisting of k vectors spans W. (b) Show that any spanning set for W 


consisting of k vectors is independent. 


4. Let S = I A ~ ,.. . ,A > be a spanning set for W. Show that S m 


contains a basis for W. [Hint: Use the argument of Theorem 5.1 

5. Let IA;, 
...,G be an independent set in Vn . Show that this 
set can be extended to a basis for Vn . [Hint: Use the argument of Theorem 5 .1  


6 .  If V acd W are suSspaces of Vn and Vk, respectively, a 

function T : V + W  is called a linear transformation if it satisfes the usual 

linearity properties: 
i 	 T(X + Y) = T(X) + T(Y), 

If T is one-to-one and carries V onto W, it is called dl: linear. 


isomorphism of vector spaces. 


Stippose All.. .,A,, is a basis for V; let B1p.afBk be arbitrary 

vectors of W. (a) Slim? there exists a linear transformation T : V + W  

such that T(Ai) = Bi fc>r all i. (b) Show this linear transformation is unique. 

7. L e t  W be a subspace of Vn: let Al,...,% be a basis for W. 
Let X, Y be vectors of W. Then X = 2xjAi and Y = 2 yiAi for unique 
scalars xi - m d  y.. These scalars are called the camponents of X and Y,

1 

respectively, relative to the basis Aif...f\. 


(a) Note that 	 and Conclude 

that the function T : Vk --) W defia~d by T(xl,...,%) = 'fxiAi is a 


1 inear isomorphism . 




A17 


(b) Suppose that the basis A ,. is an orthonormal basis. Show 

that X*Y = 2xiYi . Conclude that the isomorphism T of (a) preserves the 
dot product, that is, T(x).T(Y) = X*y . 

8. Prove the following: 

. b e 7  

Theorem. If W is a subspace 'L 
of Vn, then W has an orthonormal basis. 


Froof. Step 1. Let B1,...,B be mutually orthogonal non-zero vectors 
m 

in Vn ; be a vector not in L(B l,...,B ). Given scalars let Am+l m

cl,...,c let m '  
-- A ~ + ~  + C1B1 + " CmBm

Bnt+l 

+ 

Show that Bmcl is different from 2 and that L(B1,. ..,B ,B 
m m+l) = 

L(B~,...,B ,A ) - Then show that the ci mmy be so chosen that Bm+l is m m+l

orthogonal to each of B ..,B, . 
Steep 2. Show that if W is a subspace of Vn of positive dimension. 

then W has a basis consisting of vectors that are mutually orthogonal. 

i [Hint: Proceed by induction on the dimension of W.] 

Step 3. Prove the theorem. 

Gauss-Jordan elimination 


If W is a subspace of Vn, specified by giving a spanning set for 


W, we have at present no constructive process for determining the dimension 


of W nor of finding a basis for W, although we bow these exist. There 


is a simple procedure for carrying out this process; we describe it nw.  


~efinitfon. The rectangular a r r G  of numbers 




is called a matrix of size k by n. The number a is 
! ij 

th
called the entry of A in the i- row and j-th column. 

Suppose we let Ai. be the vector 

for i = 1,. ..lc. Theh Ai is just the ith row of the matrix A. The 

subspace of Vn spanned by the vectors A l l...,% is called the row space 

of the matrix A. 

WE now describe a procedure for determining the dimension of this space. 


It involves applying operations to the matrix A, of the following types: 


(1) Interchange two rows of A. 


(2) Replace row i of A by itself plus a scalar multiple of another row, 


say rcm m. 


(3) Multiply row i of A by a non-zero scalar. 

These operations are called the elcmentary & operations. Their usefulness cclmes 

from the following fact: 

Theorem 6. Suppose B is the matrix obtained by applying a sequence 

of elementary row operations to A,successively. Then the row spaces of 

A =d . B are the same. 

--Proof. It suffices to consider the case where B is obtained by 

applying a single row operation to A. Let All...,% be the rows of A, 


and let BI,  ...,Bk be the rows of 8. 

If the operation is of t y p  ( I ) ,  these two sets of vectors are the 

same (only their order is changed), so the spaces they span are the same. 

If the operation is of type (3) ,  then 

B i = c A i  and B = A  for j # i.
j j 



Clearly, any linear combination of 
\ B1,...,Bk can be written as a linear 

combination of Al....,+ Because c # 0 ,  the converse is also true. 

Finally, suppose the operation is of type (2). Then 

Bi = Ai + dAm m d  B i = A  for j f i .  
J j 


Again, any linear combination of Bl,...,Bk can be written as a linear 

combination of Al. ...,+ Because 

and 

A. = B

3 j for j # i , 

the converse is also true. a 


The Gauss-Jordan procedure consists of applying elementary row operations 

to the matrix A until it is brought into a form where the dimension of its 

row space is obvious. It is the following: 
-

I G a u s s J o r d a n  elimination. Examine the first column of your matrix. 

I (I) If this column consists entirely of zeros, nothing needs to ba I 
done. Restrict your attention now to the matrix obtained by deleting the 

first column, and begin again. 

% (11) If this column has a non-zero entry, exchange rows if necessary 


to bring it to the top row. Then add multiplesof the top row to the lower 

rows so as to make all remaining entries in the first column into zeros. 

Restrict your attention now to the matrix obtained by deleting the first 

column and first row, and begin again. 


The procedure stops when the matrix remaining has only one row. 


k t  us illustrate the procedure with an example. 




Pr-oblem. Find the dimension of the row space of the matrix 


Solution. First -step. Alternative (a) applies. Exchange rows (1)

and ( 2 ) ,  obtaining 

,
! Replace row (3) by row (3) + row ( 1 ) ; then replace (4)by (4)+ 2 times ( I) . 

Second step. - Restrict attention to the matrix in the box. (11) applies.

Replace row (4) by row (4)- row (2) , obtaining 

Third -step. 
L_. 

Restrict attention to the matrix in the box. (I) applies,


so nothing needs be done. One obtains the matrix 




Fourth --step. Restrict attention to the matrix in the box. 
 (11) applies. 

Replace row (4) by row (4)- 77 row (3) , obtaining 

The procedure is now finished. The matrix we end up with is in what is called 


__3 
echelon or "stair-stepUfom. The entries beneath the steps are zero. And 


the entries -1, 1, and 3 that appear at the "inside cornerst1 of the stairsteps 

i 

are non-zero. These entries that appear at the "inside cornerswof the stairsteps 

are often called the pivots in the echelon form. 

Yclu can check readily that the non-zero rows of the matrix B are 

independent. (We shall prove this fact later.) It follows that the non-zero rows 

of the matrix B form a basis for the row space of B, and hence a basis for 

the row space of the original matrix A. Thus this row space has dimension 3. 

The same result holds in general. If by elementary operations you 


reduce the matrix A to the echelon form B, then the non-zero rows are B 


are independent, so they form a basis for the row space of B, and hence a 


b~.sisfor the row space of A. 

Now we discuss how one can continue to apply elementary operations to 

1 reduce the matrix B to an even nicer form. The procedure is this: 



Begin by considering the last non-zero row. By adding multiples of this row 


to each row above itr one can bring the matrix to the form where each entry lying 


above the pivot in this row is zero. Then continue the process, working now 


with the next-to-last non-zero row. Because all the entries above the last 


pivot are already zero, they remain zero as you add multiples of the next-to- 


last non-zero row to the rows above it. Similarly one continues. Eventually 


the matrix reaches the form where all the entries that are directly above the 


pivots are zero. (Note that the stairsteps do not change during this process, 


nor do the pivots themselves.) 


Applying this procedure in the example considered earlier, one brings 


the matrix B into the form 


Note that up to this point in the reduction process , we have used only 

elementary row operations of types (1) and (2). It has not been necessary to 

multiply a row by a non-zero scalar. This fact will be important later on. 

WE?are not yet finished. The final step is to multiply each non-zero 


row by an appropriate non-zero scalar, chosen so as to make the pivot entry 


into 1. This we can do, because the pivots are non-zero. At the end of 


this process, the matrix is in what is called reduced echelon form. 


The reduced echelon form of the matrix C above is the matrix 




As we have indicated, the importancs of this process comes from the 

'! 

following theorem: 


Theorem 7. Let A be a matrix; let W be its row space. Suppose 


we transform A by elementary row operations into the echelon matrix B, 


or into the reduced echelon matrix D. Then the non-zero rows of B 


are a basis for W, m d  so are the non-zero rows of D. 


-- Pr-oof. The rows of B span W, as we noted before; and so do the 

rows of D. It is easy to see that no non-trivial linear combination of the 

rmn-zero rows of D equals the zero vector , because each of these rows 

has an entry of 1 in a position where the others all have entries of 0. 

Thus the dimension of W equals the number r of non-zero rows of D. 

This is the same as the number of non-zero rows of B . If the rows of B 

\ifre not independent, thon one would equal a linear combination of the others. 

Piis would imply that the row space of B could be spanned by fewer than 
\ 

r rcws, which would imply that its dimension is less than r. 


Exercises 


I. Find bases for the row spaces of the following matrices: 


2. Reduce the matrices in Exercise 1 to reduced echelon form. 



*3. Prove the following: 


P~eorern. The reduced echelon form of a matrix is unique. 


Proof. Let D and D1 be two reduced echelon matrices, w5ose 


rows span the same subspace W of Vn. We show that D = D'. 

Let R be the non-zero rows of D ; and suppose that the 

pivots (first non-zero entries) in these rows occur in columns jl,...,j 
k t  


respectively. 


(a )  =ow that the pivots of D1 wrur in the colwols jl,...,jk. 

[Hint: Lst R be a row of Dl; suppose its pivot occurs in column p. We 

have R = c R + ... + c& for some scalars ci . (Why?) Show that 1 1  

c = 0 if ji< p. Derive a contradiction if p is not equal to any of i 

(b) If R is a row of D1 whose pivot occurs in columr.~. jm , show 

that R = Rm. [Hint: We have R = c.R + 1 1  ... + c k s  for some scalars ci g  

Show that ci = 0 for i Z m, and c = 1.1 m 



parametric equations - of lines - and planes - in Vn 


Given n-tuples P and A, with A # Q, the -line 
through P determined -by A is defined to be the set of all 


points X such that 


for some scalar t. It is denoted by 


L ( P ; A ) .  The vector A is called a direction vector for the 

line. Note that if P = 2, then L is simply the 1-dimensional subspace 

of Vn spanned by A. 

,, ' 

The equation ( * )  is often called a parametric equation 

for the line, and t is called the parameter in this equation. 

As t ranges over all real numbers, the corresponding point X 

ranges over all points of the line L. When t = 0, then X = P; when 

t = 1, then X = P + A; when t = $, then X = P + %A; and so on. All 

these are points of L. 

Occasionally, one writesthe vector equation out in scalar 


form as follows: 
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where P = p , , p n  and A = (al,...,a ) .  These are called 

-
n 


the scalar parametric equations for the line. 


Of course, there is no uniqueness here: a given line can 

2 


be represented by many different parametric equations. The 

following theorem makes this result precise: 

Theorem 8. -- The lines L(P;A) - and L(Q:B) - are equal - if 

- and only -if they - -  have a point -in common - and A - is parallel - to B. 

--Proof. If L(P;A) = L(Q;B), then the lines obviously have a point

in comn. Since P and P + A lie on the first line they also lie on 

the second line, so that 


for distinct scalars ti and t2. Subtracting, we have A = (t2-tl)B, so 

A is parallel to B. 

Conversely, suppose the lines intersect in a point R, and suppose 

A and B are parallel. We are given that -

for some scalars tl ard t2, and that A = cE for some c # 0 .  We can 

solve these equations for P in terms of Q and B: 

P = Q+t2B- tlA = Q + (t2-tl&JB. 

Now, given any point X = P + tA of the line L(P;A), WE can write 

X = P + tA = Q + (t2-tlc)B+ tcB. 

Thus X belongs to the line L(Q;B). 
Thus every point of L(P;A) belongs to L(Q:B) . The 

symmetry of the argument shows that the reverse holds as well. O 

Definition. It follows from the preceding theorem that 

given a line, its direction vector is uniquely determined up to 

a non-zero scalar multiple. We define two lines to be parallel 



if t h e i r  d i r e c t i o n  v e c t o r s  a r e  p a r a l l e l .  
I 

Corollary 9. D i s t i n c t  p a r a l l e l  l i n e s  cannot  i n t e r s e c t ,  

Corollary 10-. Given --a l i n e  L - -and a  p o i n t  Q , t h e r e  -is  

e x a c t l y  -- one l i n e  c o n t a i n i n g  Q -- t h a t  i s  p a r a l l e l  - t o  L. 

Proof .  Suppose L is t h e  l i n e  L ( P ; A ) .  Then t h e  l i n e  

L(Q;A) c o n t a i n s  Q and i s  p a r a l l e l  t o  L. By Theorem 8 ,  any 

o t h e r  l i n e  c o n t a i n i n g  Q and p a r a l l e l  t o  L i s  equa l  t o  t h i s  

one. 0 

Theorem - 11. Given - two d i s t i n c t  p o i n t s  P - and Q ,  

t h e r e  -i s  e x a c t l y  --one l i n e  c o n t a i n i n g  -them. 

Proof .  L e t  A =  Q - P ;  t hen  A #  -0. The l i n e  L ( P ; A )  

c o n t a i n s  bo th  P ( s i n c e  P = P + OA) and Q ( s i n c e  

Q = P + L A ) .  

Now suppose L ( R ; B )  i s  some o t h e r  l i n e  c o n t a i n i n g  P 

and Q. Then 

f o r  d i s t i n c t  scalars tl and t2. It fo l lows  t h a t  

s o  t h a t  the v e c t o r  A = Q - P i s  p a r a l l e l  t o  B. I t  fo l lows  

from Theorem ' 8  t h a t  

Now we.study planes i n  V,. 



Def in i t ion .  I f  P i s  a po in t  of Vn and if. A and 

B a r e  independent vec to r s  of V n r  w e  def i n e  the  plane through 

P determined 2 A -and B t o  be t h e  s e t  of a l l  p o i n t s  X of 

t h e  form 

where s and t run through a l l  r e a l  numbers. We denote t h i s  

plane by M ( P ; A , B ) .  

The equat ion ( * )  i s  c a l l e d  a parametr ic  equat ion f o r  t h e  

plane,  and s and t a r e  c a l l e d  t h e  parameters i n  t h i s  equa- 

t i o n .  I t  may be w r i t t e n  o u t  a s  n s c a l a r  equat ions,  i f  des i red .  

When s = t = 0, then X = P; when s = 1 and t = 0, then X = P + A; when 


s = 0 and t = 1, then X = P + B; and SO on. 


,/1/ 


Ncte that if P = 2, then t h i s  plane is j u s t  the 2-dimensional subspace 

of Vn span&: by A and B. 

J u s t  as f o r  l i n e s ,  a plane has many d i f f e r e n t  parametr ic  

r ep resen ta t ions .  More p r e c i s e l y ,  one has t h e  following theorem: 

Theorem 12. - The p lanes  M(P;A,B)  - and M(Q:C,D) - are 

equa l  -- i f  and only - i f  they - -  have a p o i n t  - i n  common and t h e  l i n e a r  

span of A - and B equa l s  - t h e  l i n e a r  span - of C - and D.  

-Proof.  I f  t h e  p lanes  a r e  equa l ,  they obviously have a 
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point in comn. Fcrthermore, since P and P + A ard P + B all lie 


on the first plane, they lie on the second plane as well. Then 


P 	+ B = Q + s3c + tp, 

are some scalars s ar-d t Subtracting,we see that 
i i' 

A = (sZ-sl)C + (t2-tl)Df 

B (s3-s1)C + (t3-tl)D. 

Thus A and B lie in the linear span of C and D. Symmetry shows that 

C and D lie in the linear span of A and B as well. Thus these linear 

spans are the same. 

Conversely, suppose t h a t  the  planes i n t e r s e c t  i n  a po in t  

R and t h a t  L(A,B) = L(C,D). Then 

P + s l A + t B  = R = Q+s2C+t2D1 


for some scalars si ard ti. We can solve this equation for P as follows: 


P = Q + (linear combination of A,B,C,D). 

Then if X is any point of the first plane M(P;A,B), we have 


X 	= P + s A + t B  for some scalars s and t, 

= Q + (linear combination of A,B,C,D) + sA + tB 

= Q + (linear combination of CID), 

since A and B belong t o  L(c,D), 

Thus  X belongs to M (Q;C1D) . 
Symmetry of  t h e  argument shows t h a t  every po in t  of 

M(Q;C,D) belongs t o  M(P;A,B) a s  w e l l .  0 

Defin i t ion .  Given a plane M = M(P;AtB), the vec to r s  

A and B a r e  n o t  uniquely determined by M, but t h e i r  l i n e a r  

span is. W e  say t h e  p lanes  M(P;A,B) and M(Q;C,D) a r e  . 

p a r a l l e l  i f  L(A,B) = L(C,D). 



Corollary 13. TKOdistinct parallel planes cannot intersect. 

corollary - 14. Given - a plane M - -  and a point Q, there -is 
exactly one - plane containinq Q -- that is parallel - to M .  

Proof. Suppose M = M ( P ; A , B )  . Then M(Q;A,B) is a 

plane that contains Q and is parallel to M. By Theorem 12 

any other plane containing Q parallel to M is equal to 

this one. 

Definition. WE'say three points P,Q,R are collinear if they lie 

on a line. 

Lemma 15. The points P,Q ,R are collinear if and only if the vectdrs 

Q-P =d R-P are dependent (i.e., parallel). 

Proof. The line L(P; Q-P) is the one containing P and Q, and 

theliae; L(P;R-P) istheonecontaining P and R. If Q-P m d  R-P 

are parallel, these lines are the same, by Theorem .8,so P, Q, and R 
i 

are collinear. Conversely, if 'P, Q, and R are collinear, these lines must 

be the same, so that Q--P and ' R-P must be parallel. a, 
Theorem 16-- . .' Given three - non-collinear points P, Q, R, 

there - is exactly - one plane containing - them. 

Proof. Let A = Q - P and B = R - P; then 

A and B are independent. The plane M(P; A,B) cGntains P and P + A = Q 

and P + B = R *  

Now suppose M(S;C,D) is 'another plane containing P, 

Q, and R. Then 



for some scalars s'I 	 and ti i . Subtracting,we see that the vectors 

Q - P = A and R - P = B belong to the linear span ~f f2and D. By 

symmetry, C and D belong to the linear span of A ad B. Then Theorem 

12 implies that these two planes are equal. 

Exercises 


1. We say the line L is parallel to the plane 

M = M(P;A,B) if the direction vector of L belongs to L(A,B). 

Show that if L is parallel to M and intersects M, then L 

is contained in M. 

2. Show that two vectors Al and A2 in Vn are 


linearly dependent if and only if they lie on a line through 


the origin. 


3. Show that three vectors All A2, A3 in Vn are 

linearly dependent if and only if they lie on some plane through 

the origin. 

Let A 	 = 1 - 1 0  B = (2,0,1). 

(a) Find parametric equations for the line through P and Q, and 

for the line through R with direction vector A. Do these lines intersect? 

(b) Find parametric equations for the plane through PI Q, and 

R. and for the plane through P determined by A and B. 


5 .  Let L be the line in Vj through the points P = (1.0.2) and 

Q = (1,13). Let L1 be the line through 2 parallel to the vector 

A = ( 3 - 1 )  Find parametric equations for the line that intersects both L 

I 
and Lf and is orthogonal to both of them.



432 

Parametric equations for k-planes Vn. 

Following t h e  p a t t e r n  f o r  l i n e s  and p l anes ,  one can d e f i n e ,  more 

g e n e r a l l y ,  a  k-plane i n  Vn a s  fo l lows:  

D e f i n i t i o n .  Given a p o i n t  P of  Vn and a se t  

A ~ , . . . , A ~  of  k independent  v e c t o r s  i n  V,, w e  d e f i n e  t h e  

k-plane through P determined & Al, ....Ak t o  be  t h e  set  o f  

a l l  v e c t o r s  X of t h e  form 

f o r  some s c a l a r s  ti. W e  denote  t h i s  set  o f  p o i n t s  by 

M(P;A1,.. ., A k ) .  

Sa id  d i f f e r e n t l y  . X i s  i n  t h e  k-plane M (P;Al,. . .,Ak' 
i f  and on ly  i f  X - P i s  i n  t h e  l i n e a r  span of  A1, ...,Ak. -

Note that if P = 2, then t h i s  k-plane is just the k- dimensional 

1 linear subspace of Vn s p ~ e dby A1, ...,%. 
J u s t  as w i t h  t h e  c a s e  o f  l i n e s  (1-planes)  and p l a n e s  

(2 -p l anes ) ,  one has  t h e  fo l lowing  r e s u l t s :  

Theorem 12, Let MI = M(P;A and 3 = M ( Q ; B ~ '  1 * * * 1 ~1k

be two k-planes in  Vn. Then M1 = M2 i f  and only if they have a point in  

commn and the linear span of A I I . . . I %  equals the linesr span of B1, ...,Bk. 
Definition. We say that the k-planes M1 and M2 of this  theorem 

are paral le l  if  the linear span of A I I . . - I %  equals the linear span of 

B1?...,Bk. 
Theorem 18. Given k-plane M Vn 5 p o i n t  

Q ,  t h e r e  -i s  e x a c t l y  -one k-plane -i n  V, c o n t a i n i n g  Q 

p a r a l l e l  - . t o  ..-M.. 
4 

-- Lemma 19. Given points POt..,Pk in Vn, they are contained in  

a plane of dimension less than k i f  and only i f  the vectors 



I 

P1 - Po,..., Pk- Po are dependent. 


Theorem 2Q. Given k+l distinct points Po,...,Pk in Vn. 


If these points.do not lie in any plane of dimension less than k, tten 


there is exactly onek-plane containing them; it is the k-plane 


More generally, we make the following definition: 


-Definition. If M1 = M(P:Al, ...,$) is a k-plane, and 

M2 = M(Q;B~,...,B ) is an m-plane, in Vn , and if k s  m, we say m

MI is parallel to M2 if the linear span of Al,...,% is contained 

in the linear span of B1,...,B, . 

-Brercises 

1. Prove Theorems 17 and 18. 


2. Prove Theorems 19 and 20. 


3. Given the line L = L(Q;A) in Vj . where A = (1.-1,2). 

Find parametric equations for a 24lane containing the point P = (1,1,1) 

that is parallel to L. Is it unique? C m  you find such a plane containing 

both the point P and the point Q = (-1,0,2)? 

4. Given the 2-plane MI. in V4 containing the points P = (1,-I, 2,-1) 

and Q = (O.l,l,O)wd R = (lrl,0,3).Find parametric equations for a 3-plane 

in Vq that containsthe point S = (l,l,l.) and is parallel to MI. 

Is it unique? Can you find such a 3-plane thatcontains both S and the 

point T = (0,1,0,2)? 
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