
6. Cylindrical and spherical coordinates 

Recall that in the plane one can use polar coordinates rather than 
Cartesian coordinates. In polar coordinates we specify a point using 
the distance r from the origin and the angle θ with the x-axis. 

In polar coordinates, if a is a constant, then r = a represents a circle 
of radius a, centred at the origin, and if α is a constant, then θ = α 
represents a half ray, starting at the origin, making an angle α. 

Suppose that r = aθ, a a constant. This represents a spiral (in 
fact, the Archimedes spiral), starting at the origin. The smaller a, the 
‘tighter’ the spiral. 

By convention, if r is negative, we use this to mean that we point in 
the opposite direction to the direction given by θ. Also by convention, 
θ and θ + 2π represent the same point. We may require r ≥ 0 and 
0 ≤ θ < 2π and if we are not at the origin, this gives us unique polar 
coordinates. 

It is straightforward to convert to and from polar coordinates: 

x = r cos θ 

y = r sin θ, 

and 
2 2 2 r = x + y 

tan θ = y/x. 

For example, what curve does the equation r = 2a cos θ represent? 
Well if we multiply both sides by r, then we get 

r 2 = 2ar cos θ. 

So we get 
x 2 + y 2 = 2ax. 

Completing the square gives 

(x − a)2 + y 2 = a 2 . 

So this is a circle radius a, centred at (a, 0). Polar coordinates can be 
very useful when we have circles or lines through the origin, or there is 
a lot of radially symmetry. 

Instead of using the vectors ı̂ and ĵ, in polar coordinates it makes 
sense to use orthogonal vectors of unit length, that move as the point 
moves (these are called moving frames). At a point P in the plane, 
with polar coordinates (r, θ), we use the vector êr to denote the vector 
of unit length pointing in the radial direction: 

êr = cos θı̂ + sin θj.̂
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êr points in the direction of increasing r. The vector êθ is a unit vector 
pointing in the direction of increasing θ. It is orthogonal to êr and so 
in fact 

êθ = − sin θı̂ + cos θj.̂

We will call a set of unit vectors which are pairwise orthogonal, an 
orthonormal basis if we have two in the plane or three in space. 

We want do something similar in space but now there are two choices 
beyond Cartesian coordinates. The first just takes polar coordinates 
in the xy-plane and throws in the extra variable z. So a point P is 
specified by three coordinates, (r, θ, z). r is the distance to the origin, 

of the projection P � of P down to the xy-plane, θ is the angle 
−−
OP � makes 

with the x-axis, so that (r, θ) are just polar coordinates for the point 
P � in the xy-plane, and z is just the height of P from the xy-plane. 

x = r cos θ 

y = r sin θ 

z = z. 

Note that the locus r = a, specifies a cylinder in three space. For 
this reason we call (r, θ, z) cylindrical coordinates. The locus θ = α, 
specifies a half-plane which is vertical (if we allow r < 0 then we get 
the full vertical plane). The locus z = a specifies a horizontal plane, 
parallel to the xy-plane. 

The locus z = ar specifies a half cone. At height one, the cone has 
radius a, so the larger a the more ‘open’ the cone. 

The locus z = aθ is rather complicated. If we fix the angle, then we 
get a line of this height and this angle. The resulting surface is called 
a helicoid, and looks a little bit like a spiral staircase. 

Again it is useful to write down an orthonormal coordinate frame. In 
this case there are three vectors, pointing in the direction of increasing 
r, increasing θ and increasing z: 

êr = cos θı̂ + sin θĵ

êθ = − sin θı̂ + cos θĵ

êz 
ˆ= k. 

The third coordinate system in space uses two angles and the dis
tance to the origin, (ρ, θ, φ). ρ is the distance to the origin, θ is the 
angle made by the projection of P down to the xy-plane and φ is the 
angle the radius vector makes with the z-axis. Typically we use coor
dinates such that 0 ≤ z ≤ ∞, 0 ≤ θ < 2π and 0 ≤ φ ≤ π. To get 
from spherical coordinates to Cartesian coordinates, we first convert to 

2 



cylindrical coordinates, 

r = ρ sin φ 

θ = θ 

z = ρ cos φ. 

So, in Cartesian coordinates we get 

x = ρ sin φ cos θ 

y = ρ sin φ sin θ 

z = ρ cos φ. 

The locus z = a represents a sphere of radius a, and for this reason 
we call (ρ, θ, φ) cylindrical coordinates. The locus φ = a represents a 
cone. 

Example 6.1. Describe the region 

x 2 + y 2 + z 2 ≤ a 2 and x 2 + y 2 ≥ z 2 , 

in spherical coordinates. The first region is the region inside the sphere 
of radius, 

ρ ≤ a. 

The second is the region outside a cone. The surface of the cone is 
given by z2 = x2 + y2 . Now one point on this cone is the point (1, 1, 1), 
so that this a right-angled cone, and the region is given by 

π/4 ≤ φ ≤ 3π/4. 

So we can describe this region by the inequalities 

ρ ≤ a and π/4 ≤ φ ≤ 3π/4. 

Finally, let’s write down the moving frame given by spherical coordi
nates, the one corresponding to increasing ρ, increasing θ and increasing 
φ. 

xı̂ + yĵ + zk̂
êρ = �


x2 + y2 + z2


= sin φ cos θı̂ + sin φ sin θˆ k. j + cos φˆ

êθ = − sin θı̂ + cos θj.̂
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To calculate êφ, we use the fact that it has unit length and it is 
orthogonal to both êρ and êθ. We have 

êφ = ±ˆ eρeθ × ˆ

ı̂ ĵ k̂

=
 − sin θ cos θ 0 

sin φ cos θ sin φ sin θ cos φ


= cos φ cos θı̂ + sin θ cos φĵ− (sin2θ sin φ + cos2 θ sin φ)k̂

= cos φ cos θı̂ + cos φ sin θĵ− sin φk̂

Now when φ increases, z decreases. So we want the vector with 
negative z-component, which is exactly the last vector we wrote down. 
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