4. Planes and distances

How do we represent a plane Π in \mathbb{R}^{3} ? In fact the best way to specify a plane is to give a normal vector \vec{n} to the plane and a point P_{0} on the plane. Then if we are given any point P on the plane, the vector $\overrightarrow{P_{0} P}$ is a vector in the plane, so that it must be orthogonal to the normal vector \vec{n}. Algebraically, we have

$$
\overrightarrow{P_{0} P} \cdot \vec{n}=0 .
$$

Let's write this out as an explicit equation. Suppose that the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right), P=(x, y, z)$ and $\vec{n}=(A, B, C)$. Then we have

$$
\left(x-x_{0}, y-y_{0}, z-z_{0}\right) \cdot(A, B, C)=0
$$

Expanding, we get

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

which is one common way to write down a plane. We can always rewrite this as

$$
A x+B y+C z=D
$$

Here

$$
D=A x_{0}+B y_{0}+C z_{0}=(A, B, C) \cdot\left(x_{0}, y_{0}, z_{0}\right)=\vec{n} \cdot \overrightarrow{O P_{0}}
$$

This is perhaps the most common way to write down the equation of a plane.

Example 4.1.

$$
3 x-4 y+2 z=6
$$

is the equation of a plane. A vector normal to the plane is $(3,-4,2)$.
Example 4.2. What is the equation of a plane passing through $(1,-1,2)$, with normal vector $\vec{n}=(2,1,-1)$? We have

$$
(x-1, y+1, z-2) \cdot(2,1,-1)=0
$$

So

$$
2(x-1)+y+1-(z-2)=0
$$

so that in other words,

$$
2 x+y-z=-1
$$

A line is determined by two points; a plane is determined by three points, provided those points are not collinear (that is, provided they don't lie on the same line). So given three points P_{0}, P_{1} and P_{2}, what is the equation of the plane Π containing P_{0}, P_{1} and P_{2} ? Well, we would like to find a vector \vec{n} orthogonal to any vector in the plane. Note that $\overrightarrow{P_{0} P_{1}}$ and $\overrightarrow{P_{0} P_{2}}$ are two vectors in the plane, which by assumption are
not parallel. The cross product is a vector which is orthogonal to both vectors,

$$
\vec{n}=\overrightarrow{P_{0} P_{1}} \times \overrightarrow{P_{0} P_{2}}
$$

So the equation we want is

$$
\overrightarrow{P_{0} P} \cdot\left(\overrightarrow{P_{0} P_{1}} \times \overrightarrow{P_{0} P_{2}}\right)=0
$$

We can rewrite this a little. $\overrightarrow{P_{0} P}=\overrightarrow{O P}-\overrightarrow{O P_{0}}$. Expanding and rearranging gives

$$
\overrightarrow{O P} \cdot\left(\overrightarrow{P_{0} P_{1}} \times \overrightarrow{P_{0} P_{2}}\right)=\overrightarrow{O P_{0}} \cdot\left(\overrightarrow{P_{0} P_{1}} \times \overrightarrow{P_{0} P_{2}}\right)
$$

Note that both sides involve the triple scalar product.
Example 4.3. What is the equation of the plane Π through the three points, $P_{0}=(1,1,1), P_{1}=(2,-1,0)$ and $P_{2}=(0,-1,-1)$?

$$
\overrightarrow{P_{0} P_{1}}=(1,-2,-1) \quad \text { and } \quad \overrightarrow{P_{0} P_{2}}=(-1,-2,-2) .
$$

Now a vector orthogonal to both of these vectors is given by the cross product:

$$
\begin{aligned}
\vec{n} & =\overrightarrow{P_{0} P_{1}} \times \overrightarrow{P_{0} P_{2}} \\
& =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & -2 & -1 \\
-1 & -2 & -2
\end{array}\right| \\
& =\hat{\imath}\left|\begin{array}{cc}
-2 & -1 \\
-2 & -2
\end{array}\right|-\hat{\jmath}\left|\begin{array}{cc}
1 & -1 \\
-1 & -2
\end{array}\right|+\hat{k}\left|\begin{array}{cc}
1 & -2 \\
-1 & -2
\end{array}\right| \\
& =2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k} .
\end{aligned}
$$

Note that

$$
\vec{n} \cdot \overrightarrow{P_{0} P_{1}}=2-6+4=0
$$

as expected. It follows that the equation of Π is

$$
2(x-1)+3(y-1)-4(z-1)=0
$$

so that

$$
2 x+3 y-4 z=1
$$

For example, if we plug in $P_{2}=(0,-1,-1)$, then

$$
2 \cdot 0+3 \cdot-1+4=1,
$$

as expected.

Example 4.4. What is the parametric equation for the line l given as the intersection of the two planes $2 x-y+z=1$ and $x+y-z=2$?

Well we need two points on the intersection of these two planes. If we set $z=0$, then we get the intersection of two lines in the $x y$-plane,

$$
\begin{aligned}
2 x-y & =1 \\
x+y & =2 .
\end{aligned}
$$

Adding these two equations we get $3 x=3$, so that $x=1$. It follows that $y=1$, so that $P_{0}=(1,1,0)$ is a point on the line.

Now suppose that $y=0$. Then we get

$$
\begin{aligned}
2 x+z & =1 \\
x-z & =2 .
\end{aligned}
$$

As before this says $x=1$ and so $z=-1$. So $P_{1}=(1,0,-1)$ is a point on l.

$$
\overrightarrow{P_{0} P}=t \overrightarrow{P_{0} P_{1}},
$$

for some parameter t. Expanding

$$
(x-1, y-1, z)=t(0,-1,-1),
$$

so that

$$
(x, y, z)=(1,1-t,-t) .
$$

We can also calculate distances between planes and points, lines and points, and lines and lines.

Example 4.5. What is the distance between the plane $x-2 y+3 z=4$ and the point $P=(1,2,3)$?

Call the closest point R. Then $\overrightarrow{P R}$ is orthogonal to every vector in the plane, that is, $\overrightarrow{P R}$ is normal to the plane. Note that $\vec{n}=(1,-2,3)$ is normal to the plane, so that $\overrightarrow{P R}$ is parallel to the plane.

Pick any point Q belonging to the plane. Then the triangle $P Q R$ has a right angle at R, so that

$$
\overrightarrow{P R}= \pm \operatorname{proj}_{\vec{n}} \overrightarrow{P Q}
$$

When $x=z=0$, then $y=-2$, so that $Q=(0,-2,0)$ is a point on the plane.

$$
\overrightarrow{P Q}=(-1,-4,-3) .
$$

Now

$$
\|\vec{n}\|^{2}=\vec{n} \cdot \cdot \vec{n} .=1^{2}+2^{2}+3^{2}=14 \quad \text { and } \quad \vec{n} \cdot \overrightarrow{P Q}=4 .
$$

So

$$
\operatorname{proj}_{\vec{n}} \overrightarrow{P Q}=\frac{2}{7}(1,-2,3)
$$

So the distance is

$$
\frac{2}{7} \sqrt{14}
$$

Here is another way to proceed. The line through P, pointing in the direction \vec{n}, will intersect the plane at the point R. Now this line is given parametrically as

$$
(x-1, y-2, z-3)=t(1,-2,3),
$$

so that

$$
(x, y, z)=(t+1,2-2 t, 3+3 t)
$$

The point R corresponds to

$$
(t+1)-2(2-2 t)+3(3+3 t)=4
$$

so that

$$
14 t=-2 \quad \text { that is } \quad t=\frac{2}{7}
$$

So the point R is

$$
\frac{1}{7}(9,10,27) .
$$

It follows that

$$
\overrightarrow{P R}=\frac{1}{7}(2,-4,6)=\frac{2}{7}(1,-2,3),
$$

the same answer as before (phew!).
Example 4.6. What is the distance between the two lines
$(x, y, z)=(t-2,3 t+1,2-t) \quad$ and $\quad(x, y, z)=(2 t-1,2-3 t, t+1) ?$
If the two closest points are R and R^{\prime} then $\overrightarrow{R R^{\prime}}$ is orhogonal to the direction of both lines. Now the direction of the first line is $(1,3,-1)$ and the direction of the second line is $(2,-3,1)$. A vector orthogonal to both is given by the cross product:

$$
\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 3 & -1 \\
2 & -3 & 1
\end{array}\right|=-3 \hat{\jmath}-9 \hat{k} .
$$

To simplify some of the algebra, let's take

$$
\vec{n}=\hat{\jmath}+3 \hat{k},
$$

which is parallel to the vector above, so that it is still orthogonal to both lines.

It follows that $\overrightarrow{R R^{\prime}}$ is parallel to \vec{n}. Pick any two points P and P^{\prime} on the two lines. Note that the length of the vector

$$
\operatorname{proj}_{\vec{n}} \overline{P^{\prime}} P
$$

is the distance between the two lines.
Now if we plug in $t=0$ to both lines we get

$$
P^{\prime}=(-2,1,2) \quad \text { and } \quad P=(-1,2,1)
$$

So

$$
\overline{P^{\prime}} P=(1,1,-1)
$$

Then

$$
\|\vec{n}\|^{2}=1^{2}+3^{2}=10 \quad \text { and } \quad \vec{n} \cdot \overline{P^{\prime}} P=-2
$$

It follows that

$$
\operatorname{proj}_{\vec{n}} \overline{P^{\prime}} P=\frac{-2}{10}(0,1,3)=\frac{-1}{5}(0,1,3)
$$

and so the distance between the two lines is

$$
\frac{1}{5} \sqrt{10}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.022 Calculus of Several Variables

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

