32. Stokes Theorem

Definition 32.1. We say that a vector field

$$
\vec{F}: A \longrightarrow \mathbb{R}^{m}
$$

has compact support if there is a compact subset $K \subset A$ such that

$$
\vec{F}(\vec{x})=\overrightarrow{0},
$$

for every $\vec{x} \in A-K$.
If $S \subset \mathbb{R}^{3}$ is a smooth manifold (possibly with boundary) then we will call S a surface. An orientation is a "continuous" choice of unit normal vector. Not every surface can be oriented. Consider for example the Möbius band, which is obtained by taking a piece of paper and attaching it to itself, except that we add a twist.

Theorem 32.2 (Stokes' Theorem). Let $S \subset \mathbb{R}^{3}$ be a smooth oriented surface with boundary and let $\vec{F}: S \longrightarrow \mathbb{R}^{3}$ be a smooth vector field with compact support.

Then

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{~d} \vec{S}=\int_{\partial S} \vec{F} \cdot \mathrm{~d} \vec{s},
$$

where ∂S is oriented compatibly with the orientation on S.
Example 32.3. Let S be a smooth 2-manifold that looks like a pair of pants. Choose the orientation of S such that the normal vector is pointing outwards. There are three oriented curves C_{1}, C_{2} and C_{3} (the two legs and the waist). Suppose that we are given a vector field \vec{B} with zero curvature. Then (32.2) says that

$$
\int_{C_{3}} \vec{B} \cdot \mathrm{~d} \vec{s}+\int_{C_{1}^{\prime}} \vec{B} \cdot \mathrm{~d} \vec{s}+\int_{C_{2}^{\prime}} \vec{B} \cdot \mathrm{~d} \vec{s}=\iint_{S} \operatorname{curl} \vec{B} \cdot \mathrm{~d} \vec{S}=0 .
$$

Here C_{1}^{\prime} and C_{2}^{\prime} denote the curves C_{1} and C_{2} with the opposite orientation. In other words,

$$
\int_{C_{3}} \vec{B} \cdot \mathrm{~d} \vec{s}=\int_{C_{1}} \vec{B} \cdot \mathrm{~d} \vec{s}+\int_{C_{2}} \vec{B} \cdot \mathrm{~d} \vec{s} .
$$

Proof of (32.2). We prove this in three steps, in very much the same way as we proved Green's Theorem.

Step 1: We suppose that $M=\mathbb{H}^{2} \subset \mathbb{R}^{2} \subset \mathbb{R}^{3}$, where the plane is the $x y$-plane. In this case, we can take $\hat{n}=\hat{k}$, and this induces the standard orientation of the boundary. Note that

$$
\operatorname{curl} \vec{F} \cdot \hat{n}=\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}
$$

and so the result reduces to Green's Theorem. This completes step 1.
Step 2: We suppose that there is a compact subset $K \subset S$ and a parametrisation

$$
\vec{g}: \mathbb{H}^{2} \cap U \longrightarrow S \cap W,
$$

which is compatible with the orientation, such that
(1) $\vec{F}(\vec{x})=\overrightarrow{0}$ if $\vec{x} \in S-K$, and
(2) $K \subset S \cap W$.

Define a vector field $\vec{G}: \mathbb{H}^{2} \longrightarrow \mathbb{R}^{2}$ by the rule

$$
\vec{G}(u, v)= \begin{cases}\vec{F}(\vec{g}(u, v)) \cdot D \vec{g}(u, v) & (u, v) \in U \\ \overrightarrow{0} & (u, v) \notin U\end{cases}
$$

Note that

$$
\begin{aligned}
& G_{1}(u, v)=F_{1} \frac{\partial x}{\partial u}+F_{2} \frac{\partial y}{\partial u}+F_{3} \frac{\partial z}{\partial u} \\
& G_{2}(u, v)=F_{1} \frac{\partial x}{\partial v}+F_{2} \frac{\partial y}{\partial v}+F_{3} \frac{\partial z}{\partial v} .
\end{aligned}
$$

Using step 1, it is enough to prove:

Claim 32.4.

$$
\begin{gather*}
\iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{~d} \vec{S}=\iint_{\mathbb{H}^{2}}\left(\frac{\partial G_{2}}{\partial u}-\frac{\partial G_{1}}{\partial v}\right) \mathrm{d} u \mathrm{~d} v . \tag{1}\\
\iint_{\partial S} \vec{F} \cdot \mathrm{~d} \vec{s}=\iint_{\partial \mathbb{H}^{2}} \vec{G} \cdot \mathrm{~d} s
\end{gather*}
$$

Proof of (32.4). Note that

$$
\begin{aligned}
\operatorname{curl} \vec{F} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
& =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \hat{\imath}-\left(\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right) \hat{\jmath}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \hat{k} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \frac{\partial \vec{g}}{\partial u}=\frac{\partial x}{\partial u} \hat{\imath}+\frac{\partial y}{\partial u} \hat{\jmath}+\frac{\partial z}{\partial u} \hat{k} \\
& \frac{\partial \vec{g}}{\partial v}=\frac{\partial x}{\partial v} \hat{\imath}+\frac{\partial y}{\partial v} \hat{\jmath}+\frac{\partial z}{\partial v} \hat{k} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\frac{\partial \vec{g}}{\partial u} \times \frac{\partial \vec{g}}{\partial v} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v}
\end{array}\right| \\
& =\frac{\partial(y, z)}{\partial(u, v)} \hat{\imath}-\frac{\partial(x, z)}{\partial(u, v)} \hat{\jmath}+\frac{\partial(x, y)}{\partial(u, v)} \hat{k} .
\end{aligned}
$$

So,
$\operatorname{curl} \vec{F} \cdot \frac{\partial \vec{g}}{\partial u} \times \frac{\partial \vec{g}}{\partial v}=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \frac{\partial(y, z)}{\partial(u, v)}+\left(\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right) \frac{\partial(x, z)}{\partial(u, v)}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \frac{\partial(x, y)}{\partial(u, v)}$.
On the other hand, if one looks at the proof of the second step of Green's theorem, we see that

$$
\frac{\partial G_{2}}{\partial u}-\frac{\partial G_{1}}{\partial v}
$$

is also equal to the RHS (in fact, what we calculated in the proof of Green's theorem was the third term of the RHS; by symmetry the other two terms have the same form). This is (1).

For (2), let's parametrise $\partial \mathbb{H}^{2} \cap U$ by $\vec{x}(u)=(u, 0)$ and $\partial S \cap W$ by $\vec{s}(u)=\vec{g}(\vec{x}(u))$. Then

$$
\begin{aligned}
\int_{\partial S} \vec{F} \cdot \mathrm{~d} \vec{s} & =\int_{\partial S \cap W} \vec{F} \cdot \mathrm{~d} \vec{s} \\
& =\int_{a}^{b} \vec{F}(\vec{s}(u)) \cdot \vec{s}^{\prime}(u) \mathrm{d} u \\
& =\int_{a}^{b} \vec{F}(\vec{g}(\vec{x}(u))) \cdot D \vec{g}(\vec{x}(u)) \vec{x}^{\prime}(u) \mathrm{d} u \\
& =\int_{a}^{b} \vec{G}(\vec{x}(u)) \cdot \vec{x}^{\prime}(u) \mathrm{d} u \\
& =\int_{\partial \mathbb{H}^{2} \cap U} \vec{G} \cdot \mathrm{~d} \vec{s} \\
& =\int_{\partial \mathbb{H}^{2}} \vec{G} \cdot \mathrm{~d} \vec{s},
\end{aligned}
$$

and this is (2).
This completes step 2.
Step 3: We again use partitions of unity. It is straightforward to cover the bounded set K by finitely many compact subsets $K_{1}, K_{2}, \ldots, K_{k}$, such that given any smooth vector field which is zero outside K_{i}, then
the conditions of step 2 hold. By using a partition of unity, we can find smooth functions $\rho_{1}, \rho_{2}, \ldots, \rho_{k}$ such that ρ_{i} is zero outside K_{i} and

$$
1=\sum_{i=1}^{k} \rho_{i}
$$

Multiplying both sides of this equation by \vec{F}, we have

$$
\vec{F}=\sum_{i=1}^{k} \vec{F}_{i}
$$

where $\vec{F}_{i}=\rho_{i} \vec{F}$ is a smooth vector field, which is zero outside K_{i}. In this case

$$
\begin{aligned}
\iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{~d} \vec{S} & =\sum_{i=1}^{k} \iint_{S} \operatorname{curl} \vec{F}_{i} \cdot \mathrm{~d} \vec{S} \\
& =\sum_{i=1}^{k} \int_{\partial M} \vec{F}_{i} \cdot \mathrm{~d} \vec{s} \\
& =\int_{\partial M} \vec{F} \cdot \mathrm{~d} \vec{s}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.022 Calculus of Several Variables

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

