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23. Inclusion-Exclusion 

Proposition 23.1. Let D = D1 ∪ D2 be a bounded region and let 
f : D −→ R be a function. 

If f is integrable over D1 and over D2, then f is integrable over D 
and and D1 ∩ D2, and we have �� �� �� �� 

f(x, y) dx dy = f(x, y) dx dy+ f(x, y) dx dy− f(x, y) dx dy. 
D D1 D2 D1∩D2 

Example 23.2. Let 

D = { (x, y) ∈ R2 | 1 ≤ x 2 + y 2 ≤ 9 }. 

Then D is not an elementary region. Let 

D1 = { (x, y) ∈ D | y ≥ 0 } and D2 = { (x, y) ∈ D | y ≤ 0 }. 

Then D1 and D2 are both of type 1. 
If f is continuous, then f is integrable over D and D1 ∩ D2. In fact 

D1 ∩ D2 = L ∪ R = { (x, y) ∈ R2 | − 3 ≤ x ≤ −1, 0 ≤ y ≤ 0 } 

∪ { (x, y) ∈ R2 | 1 ≤ x ≤ 3, 0 ≤ y ≤ 0 }. 

Now L and R are elementary regions. We have 

�� � 3 �� 0 � 

f(x, y) dx dy = f(x, y) dy dx = 0. 
R 1 0 

Therefore, by symmetry, 

f(x, y) dx dy = f(x, y) dx dy = 0 
L R 

and so �� �� �� 
f(x, y) dx dy = f(x, y) dx dy + f(x, y) dx dy. 

D D1 D2 
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To integrate f over D1, break D1 into three parts. �� � 3 
�� δ(x) 

� 

f(x, y) dx dy = f(x, y) dy dx 
D1 −3 γ(x) � −1 

�� √9−x
� 

2 

= f(x, y) dy dx 
−3 0 � 1 
�� √9−x

� 
2 

+ f(x, y) dy dx 
2−1 

√
1−x� 3 

�� √9−x
� 

2 

+ f(x, y) dy dx. 
1 0 

One can do something similar for D2. 

Example 23.3. Suppose we are given that �� � 1 �� 2y � 

f(x, y) dx dy = f(x, y) dx dy. 
D 0 y 

What is the region D? 
It is the region bounded by the two lines y = x and x = 2y and 

between the two lines y = 0 and y = 1. 
Change order of integration: �� � 1 �� x � � 2 �� 1 � 

f(x, y) dx dy = f(x, y) dx dy+ f(x, y) dx dy. 
D 0 x/2 1 x/2 

Example 23.4. Calculate the volume of a solid ball of radius a. Let 

B = { (x, y, z) ∈ R3 | x 2 + y 2 + z 2 ≤ a 2 }. 

We want the volume of B. Break into two pieces. Let 

B+ = { (x, y, z) ∈ R3 | x 2 + y 2 + z 2 ≤ a 2 , z ≥ 0 }. 

Let 

D = { (x, y) ∈ R2 | x 2 + y 2 ≤ a 2 }. 

Then B+ is bounded by the xy-plane and the graph of the function 

f : D −→ R, 

given by 

f(x, y) = a2 − x2 − y2 . 
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It follows that 

vol(B+) = a2 − x2 − y2 dy dx � a

D�� √a −x � � 
2 2 

= a2 2 2 dy dx √
a

− x − y

� 
−

a

a �� 
−
√

a

2

−

−

x

x2 � 
2 

� 
2 2 

y
= 

−a −
√

a −x

1 − 
2 − x2 

√
a2 − x2 dy dx. 

2 2 a

Now let’s make the substitution 
y dy

t = so that dt = .√
a2 − x2 

√
a2 − x2 

� �� 1 � 
2vol(B+) = 

a √
1 − t2(a − x 2) dt dx �−a −1 �� 1 � 

2 = 
a 

(a − x 2) 
√

1 − t2 dt dx 
−a −1 

Now let’s make the substitution 

t = sin u so that dt = cos u du. 

π a 
2 

vol(B+) = (a 2 − x 2) 
π 
cos 2 u du dx 

2�−a − 

a π 
= (a 2 − x 2)

2 
dx 

−�a �
π 2 x3 a 

= a 
2 

x − 
3 −a 

3a
= π(a 3 − 

3
) 

2πa3 

= . 
3 

Therefore, we get the expected answer 

4πa3 

vol(B) = 2 vol(B+) = . 
3 

Example 23.5. Now consider the example of a cone whose base radius 
is a and whose height is b. Put the central axis along the x-axis and 
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0 

the base in the yz-plane. In the xy-plane we get an equilateral triangle 
of height b and base 2a. If we view this as a region of type 1, we have 

x x 
γ(x) = −a 1 − and δ(x) = a 1 − . 

b b 
We want to integrate the function 

f : D −→ R, 

given by � � �2x 
f(x, y) = a2 1 − − y2 . 

b 
So half of the volume of the cone is � b 

�� a(1− ) 
� � �2 

� 
π 
� b � �2 

)
b

b

x 

x 
x
 x2 a
2 1 − 
b 

− y2 dy dx = a
 1 − 
b 

dx

2
−a(1− 0 � bπa2 2x x2 

= 
2 0 

1 − 
b 

+ 
b2 

dx 

= 
πa2 

2 

� 

x − 
x2 

b 
+ 

x3 

3b2 

�b 

0 

= 
1 
6
(πa2b). 

Therefore the volume is 
1 
3
(πa2b). 
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