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22. Double integrals 

Definition 22.1. Let R = [a, b] × [c, d] ⊂ R2 be a rectangle in the 
plane. A partition P of R is a pair of sequences: 

a = x0 < x1 < < xn = b· · · 
c = y0 < y1 < < yn = d.· · ·


The mesh of P is


m(P) = max{ xi − xi−1, yi − yi−1 | 1 ≤ i ≤ k }.


Now suppose we are given a function


f : R −→ R


Pick

�cij ∈ Rij = [xi−1, xi] × [yj−1, yj ]. 

Definition 22.2. The sum �n n

S = f(�cij )(xi − xi−1)(yj − yj−1), 
i=1 j=1 

is called a Riemann sum. 

We will use the short hand notation


Δxi = xi − xi−1 and Δyj = yj − yj−1.


Definition 22.3. The function f : R −→ R is called integrable, with 
integral I, if for every � > 0, we may find a δ > 0 such that for every 
mesh P whose mesh size is less than δ, we have 

|I − S| < �, 

where S is any Riemann sum associated to P. 

We write ��

f(x, y) dx dy = I,


R 

to mean that f is integrable with integral I. 
We use a sneaky trick to integrate over regions other than rectangles. 

Suppose that D is a bounded subset of the plane. Then we can find a 
rectangle R which completely contains D. 

Definition 22.4. The indicator function of D ⊂ R is the function 

iD : R 
1

−→ R, 



� 

�� 

� 

��	 �� 

given by 

iD(x) =	
1 if x ∈ D 

0 if x /∈ D. 

If iD is integrable, then we say that the area of D is the integral 

iD dx dy. 
R 

If iD is not integrable, then D does not have an area. 

Example 22.5. Let 

D = { (x, y) ∈ [0, 1] × [0, 1] | x, y ∈ Q }. 

Then D does not have an area. 

Definition 22.6. If f : D −→ R is a function and D is bounded, then 
pick D ⊂ R ⊂ R2 a rectangle. Define 

f̃ : R −→ R, 

by the rule 

f̃(x) =	
f(x) if x ∈ D 

0 otherwise. 

We say that f is integrable over D if f̃  is integrable over R. In this 
case �� �� 

f(x, y) dx dy = f̃(x, y) dx dy. 
D	 R 

Proposition 22.7. Let D ⊂ R2 be a bounded subset and let f : D −→ 
R and g : D −→ R be two integrable functions. Let λ be a scalar. 

Then 

(1) f + g	 is integrable over D and ��	 �� �� 
f(x, y) + g(x, y) dx dy = f(x, y) dx dy + g(x, y) dx dy. 

D	 D D 

(2) λf is integrable over D and 

λf(x, y) dx dy = λ f(x, y) dx dy. 
D	 D 

(3) If f(x, y) ≤ g(x, y) for any (x, y) ∈ D, then ��	 �� 
f(x, y) dx dy ≤ g(x, y) dx dy. 

D	 D 
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(4) |f | is integrable over D and 

| 
D 
f(x, y) dx dy| ≤ 

D

|f(x, y)| dx dy. 

It is straightforward to integrate continuous functions over regions 
of three special types: 

Definition 22.8. A bounded subset D ⊂ R2 is an elementary region 
if it is one of three types: 

Type 1: 

D = { (x, y) ∈ R2 | a ≤ x ≤ b, γ(x) ≤ y ≤ δ(x) }, 

where γ : [a, b] −→ R and δ : [a, b] −→ R are continuous functions. 
Type 2: 

D = { (x, y) ∈ R2 | c ≤ y ≤ d, α(y) ≤ x ≤ β(y) }, 

where α : [c, d] −→ R and β : [c, d] −→ R are continuous functions. 
Type 3: D is both type 1 and 2. 

Theorem 22.9. Let D ⊂ R2 be an elementary region and let f : D −→ 
R be a continuous function. 

Then 

(1) If D is of type 1, then 

�� � b 
�� δ(x) 

� 

f(x, y) dx dy = f(x, y) dy dx. 
D a γ(x) 

(2) If D if of type 2, then 

�� � d 
�� β(y) 

� 

f(x, y) dx dy = f(x, y) dx dy. 
D c α(y) 

Example 22.10. Let D be the region bounded by the lines x = 0, 
y = 4 and the parabola y = x2 . Let f : D −→ R be the function given 
by f(x, y) = x2 + y2 . 
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If we view D as a region of type 1, then we get �� � 2 �� 4 � 

f(x, y) dx dy = x 2 + y 2 dy dx 
D 0 x2 � 2� 

3 �4 

= x 2 y + 
y

dx 
30 x2 � 2 26 x6 

= 4x 2 +
3 
− x 4 − 

3
dx 

0� 
4x3 26x x5 x7 �2 

= 
3

+
3 
− 

5 
− 

3 7· 0 

25 27 25 27 

=
3

+
3 
− 

5 
− 

3 7· 
26 28 

= + 
3 5 7·� � 

1 22 

= 26 + . 
3 5 7· 

On the other hand, if we view D as a region of type 2, then we get �� � 4 �� √y � 

f(x, y) dx dy = x 2 + y 2 dx dy 
D 0 0 � 4� 

3 �√y
x

= + xy 2 dy
30 0� 4 y3/2 

= + y 5/2 dy
30 � �4 

2y5/2 2y7/2 

= + 
3 5 7· 0 

26 28 

= + 
3 5 7·� � 

1 22 

= 26 + . 
3 5 7· 
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