1. Vectors in \mathbb{R}^{2} and \mathbb{R}^{3}

Definition 1.1. A vector $\vec{v} \in \mathbb{R}^{3}$ is a 3 -tuple of real numbers $\left(v_{1}, v_{2}, v_{3}\right)$.
Hopefully the reader can well imagine the definition of a vector in \mathbb{R}^{2}.

Example 1.2. $(1,1,0)$ and $(\sqrt{2}, \pi, 1 / e)$ are vectors in \mathbb{R}^{3}.
Definition 1.3. The zero vector in \mathbb{R}^{3}, denoted $\overrightarrow{0}$, is the vector $(0,0,0)$. If $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\vec{w}=\left(w_{1}, w_{2}, w_{3}\right)$ are two vectors in \mathbb{R}^{3}, the sum of \vec{v} and \vec{w}, denoted $\vec{v}+\vec{w}$, is the vector $\left(v_{1}+w_{1}, v_{2}+\right.$ $\left.w_{2}, v_{3}+w_{3}\right)$.

If $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ is a vector and $\lambda \in \mathbb{R}$ is a scalar, the scalar product of λ and v, denoted $\lambda \cdot \vec{v}$, is the vector $\left(\lambda v_{1}, \lambda v_{2}, \lambda v_{3}\right)$.

Example 1.4. If $\vec{v}=(2,-3,1)$ and $\vec{w}=(1,-5,3)$ then $\vec{v}+\vec{w}=$ $(3,-8,4)$. If $\lambda=-3$ then $\lambda \cdot \vec{v}=(-6,9,-3)$.

Lemma 1.5. If λ and μ are scalars and \vec{u}, \vec{v} and \vec{w} are vectors in \mathbb{R}^{3}, then
(1) $\overrightarrow{0}+\vec{v}=\overrightarrow{0}$.
(2) $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$.
(3) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$.
(4) $\lambda \cdot(\mu \cdot \vec{v})=(\lambda \mu) \cdot \vec{v}$.
(5) $(\lambda+\mu) \cdot \vec{v}=\lambda \cdot \vec{v}+\mu \cdot \vec{v}$.
(6) $\lambda \cdot(\vec{u}+\vec{v})=\lambda \cdot \vec{u}+\lambda \cdot \vec{v}$.

Proof. We check (3). If $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$, then

$$
\begin{aligned}
\vec{u}+\vec{v} & =\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right) \\
& =\left(v_{1}+u_{1}, v_{2}+u_{2}, v_{3}+u_{3}\right) \\
& =\vec{v}+\vec{u} .
\end{aligned}
$$

We can interpret vector addition and scalar multiplication geometrically. We can think of a vector as representing a displacement from the origin. Geometrically a vector \vec{v} has a magnitude (or length) $|\vec{v}|=\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)^{1 / 2}$ and every non-zero vector has a direction

$$
\vec{u}=\frac{\vec{v}}{|\vec{v}|} .
$$

Multiplying by a scalar leaves the direction unchanged and rescales the magnitude. To add two vectors \vec{v} and \vec{w}, think of transporting the tail of \vec{w} to the endpoint of \vec{v}. The sum of \vec{v} and \vec{w} is the vector whose tail is the tail of the transported vector.

One way to think of this is in terms of directed line segments. Note that given a point P and a vector \vec{v} we can add \vec{v} to P to get another point Q. If $P=\left(p_{1}, p_{2}, p_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ then

$$
Q=P+\vec{v}=\left(p_{1}+v_{1}, p_{2}+v_{2}, p_{3}+v_{3}\right) .
$$

If $Q=\left(q_{1}, q_{2}, q_{3}\right)$, then there is a unique vector $\overrightarrow{P Q}$, such that $Q=$ $P+\vec{v}$, namely

$$
\overrightarrow{P Q}=\left(q_{1}-p_{1}, q_{2}-p_{2}, q_{3}-p_{3}\right) .
$$

Lemma 1.6. Let P, Q and R be three points in \mathbb{R}^{3}.
Then $\overrightarrow{P Q}+\overrightarrow{Q R}=\overrightarrow{P R}$.
Proof. Let us consider the result of adding $\overrightarrow{P Q}+\overrightarrow{Q R}$ to P,

$$
\begin{aligned}
P+(\overrightarrow{P Q}+\overrightarrow{Q R}) & =(P+\overrightarrow{P Q})+\overrightarrow{Q R} \\
& =Q+\overrightarrow{Q R} \\
& =R .
\end{aligned}
$$

On the other hand, there is at most one vector \vec{v} such that when we add it P we get R, namely the vector $\overrightarrow{P R}$. So $\overrightarrow{P Q}+\overrightarrow{Q R}=\overrightarrow{P R}$.

Note that (1.6) expresses the geometrically obvious statement that if one goes from P to Q and then from Q to R, this is the same as going from P to R.

Vectors arise quite naturally in nature. We can use vectors to represent forces; every force has both a magnitude and a direction. The combined effect of two forces is represented by the vector sum. Similarly we can use vectors to measure both velocity and acceleration. The equation

$$
\vec{F}=m \vec{a},
$$

is the vector form of Newton's famous equation.
Note that \mathbb{R}^{3} comes with three standard unit vectors

$$
\hat{\imath}=(1,0,0) \quad \hat{\jmath}=(0,1,0) \quad \text { and } \quad \hat{k}=(0,0,1),
$$

which are called the standard basis. Any vector can be written uniquely as a linear combination of these vectors,

$$
\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)=v_{1} \hat{\imath}+v_{2} \hat{\jmath}+v_{3} \hat{k} .
$$

We can use vectors to parametrise lines in \mathbb{R}^{3}. Suppose we are given two different points P and Q of \mathbb{R}^{3}. Then there is a unique line l containing P and Q. Suppose that $R=(x, y, z)$ is a general point of
the line. Note that the vector $\overrightarrow{P R}$ is parallel to the vector $\overrightarrow{P Q}$, so that $\overrightarrow{P R}$ is a scalar multiple of $\overrightarrow{P Q}$. Algebraically,

$$
\overrightarrow{P R}=t \overrightarrow{P Q}
$$

for some scalar $t \in \mathbb{R}$. If $P=\left(p_{1}, p_{2}, p_{3}\right)$ and $Q=\left(q_{1}, q_{2}, q_{3}\right)$, then

$$
\left(x-p_{1}, y-p_{2}, z-p_{3}\right)=t\left(q_{1}-p_{1}, q_{2}-p_{2}, q_{3}-p_{3}\right)=t\left(v_{1}, v_{2}, v_{3}\right)
$$

where $\left(v_{1}, v_{2}, v_{3}\right)=\left(q_{1}-p_{1}, q_{2}-p_{2}, q_{3}-p_{3}\right)$. We can always rewrite this as,

$$
(x, y, z)=\left(p_{1}, p_{2}, p_{3}\right)+t\left(v_{1}, v_{2}, v_{3}\right)=\left(p_{1}+t v_{1}, p_{2}+t v_{2}, p_{3}+t v_{3}\right)
$$

Writing these equations out in coordinates, we get

$$
x=p_{1}+t v_{1} \quad y=p_{2}+t v_{2} \quad \text { and } \quad z=p_{3}+t v_{3} .
$$

Example 1.7. If $P=(1,-2,3)$ and $Q=(1,0,-1)$, then $\vec{v}=(0,2,-4)$ and a general point of the line containing P and Q is given parametrically by

$$
(x, y, z)=(1,-2,3)+t(0,2,-4)=(1,-2+2 t, 3-4 t) .
$$

Example 1.8. Where do the two lines l_{1} and l_{2}
$(x, y, z)=(1,-2+2 t, 3-4 t) \quad$ and $\quad(x, y, z)=(2 t-1,-3+t, 3 t)$, intersect?

We are looking for a point (x, y, z) common to both lines. So we have

$$
(1,-2+2 s, 3-4 s)=(2 t-1,-3+t, 3 t) .
$$

Looking at the first component, we must have $t=1$. Looking at the second component, we must have $-2+2 s=-2$, so that $s=0$. By inspection, the third component comes out equal to 3 in both cases. So the lines intersect at the point $(1,-2,3)$.

Example 1.9. Where does the line

$$
(x, y, z)=(1-t, 2-3 t, 2 t+1)
$$

intersect the plane

$$
2 x-3 y+z=6 ?
$$

We must have

$$
2(1-t)-3(2-3 t)+(2 t+1)=6
$$

Solving for t we get

$$
9 t-3=6
$$

so that $t=1$. The line intersects the plane at the point

$$
(x, y, z)=(0,-1,3)
$$

Example 1.10. A cycloid is the path traced in the plane, by a point on the circumference of a circle as the circle rolls along the ground.

Let's find the parametric form of a cycloid. Let's suppose that the circle has radius a, the circle rolls along the x-axis and the point is at the origin at time $t=0$. We suppose that the cylinder rotates through an angle of t radians in time t. So the circumference travels a distance of at. It follows that the centre of the circle at time t is at the point $P=(a t, a)$. Call the point on the circumference $Q=(x, y)$ and let O be the centre of coordinates. We have

$$
(x, y)=\overrightarrow{O Q}=\overrightarrow{O P}+\overrightarrow{P Q}
$$

Now relative to P, the point Q just goes around a circle of radius a. Note that the circle rotates backwards and at time $t=0$, the angle $3 \pi / 2$. So we have

$$
\overrightarrow{P Q}=(a \cos (3 \pi / 2-t), a \sin (3 \pi / 2-t))=(-a \sin t,-a \cos t)
$$

Putting all of this together, we have

$$
(x, y)=(a t-a \sin t, a-a \cos t) .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.022 Calculus of Several Variables

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

