MODEL ANSWERS TO HWK \#9

1. There are a number of ways to proceed; probably the most straightforward is to view the region D as something of type 2 :

$$
\begin{aligned}
\iint_{D} x+y \mathrm{~d} x \mathrm{~d} y & =\int_{-1}^{2}\left(\int_{y^{2}-2 y}^{2-y} x+y \mathrm{~d} x\right) \mathrm{d} y \\
& =\int_{-1}^{2}\left[\frac{x^{2}}{2}+y x\right]_{y^{2}-2 y}^{2-y} \mathrm{~d} y \\
& =\int_{-1}^{2} \frac{(2-y)^{2}}{2}+y(2-y)-\frac{\left(y^{2}-2 y\right)^{2}}{2}-y\left(y^{2}-2 y\right) \mathrm{d} y \\
& =\int_{-1}^{2}-\frac{y^{4}}{2}+y^{3}-\frac{y^{2}}{2}+2 \mathrm{~d} y \\
& =\left[-\frac{y^{5}}{2 \cdot 5}+\frac{y^{4}}{4}-\frac{y^{3}}{2 \cdot 3}+2 y\right]_{-1}^{2} \\
& =-\frac{2^{4}}{5}+2^{2}-\frac{2^{2}}{3}+2^{2}-\frac{1}{10}-\frac{1}{4}-\frac{1}{6}+2 \\
& =\frac{99}{20} .
\end{aligned}
$$

2. There are a number of ways to proceed; probably the most straightforward is to view the region D as something of type 1 :

$$
\begin{aligned}
\iint_{D} 3 y \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{\frac{1}{9}}\left(\int_{x}^{3} 3 y \mathrm{~d} y\right) \mathrm{d} x+\int_{\frac{1}{9}}^{1}\left(\int_{x}^{x^{-1 / 2}} 3 y \mathrm{~d} y\right) \mathrm{d} x \\
& =\int_{0}^{\frac{1}{9}}\left[\frac{3 y^{2}}{2}\right]_{x}^{3} \mathrm{~d} x+\int_{\frac{1}{9}}^{1}\left[\frac{3 y^{2}}{2}\right]_{x}^{x^{-1 / 2}} \mathrm{~d} x \\
& =\int_{0}^{\frac{1}{9}} \frac{3^{3}}{2}-\frac{3 x^{2}}{2} \mathrm{~d} x+\int_{\frac{1}{9}}^{1} \frac{3}{2 x}-\frac{3 x^{2}}{2} \mathrm{~d} x \\
& =\left[\frac{3^{3} x}{2}-\frac{x^{3}}{2}\right]_{0}^{\frac{1}{9}}+\left[\frac{3}{2} \ln x-\frac{x^{3}}{2}\right]_{\frac{1}{9}}^{1} \\
& =\frac{3}{2}-\frac{1}{2 \cdot 3^{6}}-\frac{1}{2}+3 \ln 3+\frac{1}{2 \cdot 3^{6}} \\
& =1+3 \ln 3 .
\end{aligned}
$$

3.

$$
\begin{aligned}
\int_{0}^{2}\left(\int_{0}^{4-y^{2}} x \mathrm{~d} x\right) \mathrm{d} y & =\int_{0}^{2}\left[\frac{x^{2}}{2}\right]_{0}^{4-y^{2}} \mathrm{~d} y \\
& =\int_{0}^{2} \frac{\left(4-y^{2}\right)^{2}}{2} \mathrm{~d} y \\
& =\int_{0}^{2} 8-4 y^{2}+\frac{y^{4}}{2} \mathrm{~d} y \\
& =\left[8 y-\frac{4 y^{3}}{3}+\frac{y^{5}}{2 \cdot 5}\right]_{0}^{2} \\
& =16-\frac{32}{3}+\frac{2^{4}}{5} \\
& =\frac{2^{4} \cdot 3 \cdot 5-2^{5} \cdot 5+2^{4} \cdot 3}{3 \cdot 5} \\
& =\frac{2^{4} \cdot 3 \cdot 6-2^{5} \cdot 5}{3 \cdot 5} \\
& =\frac{2^{5}(9-5)}{3 \cdot 5} \\
& =\frac{2^{7}}{3 \cdot 5}
\end{aligned}
$$

The region in question is bounded by the curves $x=0, y=0$ and $y^{2}=4-x$. So, reversing the order of integration, we get

$$
\begin{aligned}
\int_{0}^{4}\left(\int_{0}^{\sqrt{4-x}} x \mathrm{~d} y\right) \mathrm{d} x & =\int_{0}^{4} x[y]_{0}^{\sqrt{4-x}} \mathrm{~d} x \\
& =\int_{0}^{4} x \sqrt{4-x} \mathrm{~d} x \\
& =\left[-\frac{2 x}{3}(4-x)^{3 / 2}\right]_{0}^{4}+\int_{0}^{4} \frac{2}{3}(4-x)^{3 / 2} \mathrm{~d} x \\
& =\left[-\frac{4}{3 \cdot 5}(4-x)^{5 / 2}\right]_{0}^{4} \\
& =\frac{2^{7}}{3 \cdot 5}
\end{aligned}
$$

4.

$$
\begin{aligned}
\int_{0}^{8}\left(\int_{0}^{\sqrt{y / 3}} y \mathrm{~d} x\right) \mathrm{d} y+\int_{8}^{12}\left(\int_{\sqrt{y-8}}^{\sqrt{y / 3}} y \mathrm{~d} x\right) \mathrm{d} y & =\int_{0}^{2}\left(\int_{3 x^{2}}^{x^{2}+8} y \mathrm{~d} y\right) \mathrm{d} x \\
& =\int_{0}^{2}\left[\frac{y^{2}}{2}\right]_{3 x^{2}}^{x^{2}+8} \mathrm{~d} x \\
& =\int_{0}^{2} \frac{\left(x^{2}+8\right)^{2}}{2}-\frac{\left(3 x^{2}\right)^{2}}{2} \mathrm{~d} x \\
& =\left[\frac{x^{5}}{2 \cdot 5}+\frac{8 x^{3}}{3}+2^{5} x-\frac{9 x^{5}}{2 \cdot 5}\right]_{0}^{2} \\
& =\frac{2^{4}}{5}+\frac{2^{6}}{3}+2^{6}-\frac{9 \cdot 2^{4}}{5} \\
& =\frac{896}{15}
\end{aligned}
$$

5. This is a region of type 4; we view this as an elementary region of type 1 . The projection of W onto the $x y$-plane is the elementary region of type 2 bounded by $y=x^{2}$ and $y=9$.

$$
\begin{aligned}
\iiint_{W} 8 x y z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z & =\int_{-3}^{3}\left(\int_{x^{2}}^{9}\left(\int_{0}^{9-y} 8 x y z \mathrm{~d} z\right) \mathrm{d} y\right) \mathrm{d} x \\
& =8 \int_{-3}^{3} x\left(\int_{x^{2}}^{9} y\left(\int_{0}^{9-y} z \mathrm{~d} z\right) \mathrm{d} y\right) \mathrm{d} x \\
& =8 \int_{-3}^{3} x\left(\int_{x^{2}}^{9} y\left[\frac{z^{2}}{2}\right]_{0}^{9-y} \mathrm{~d} y\right) \mathrm{d} x \\
& =8 \int_{-3}^{3} x\left(\int_{x^{2}}^{9} \frac{y(9-y)^{2}}{2} \mathrm{~d} y\right) \mathrm{d} x \\
& =4 \int_{-3}^{3} x\left(\int_{x^{2}}^{9} 81 y-18 y^{2}+y^{3} \mathrm{~d} y\right) \mathrm{d} x \\
& =4 \int_{-3}^{3} x\left[\frac{81 y^{2}}{2}-6 y^{3}+\frac{y^{4}}{4}\right]_{x^{2}}^{9} \mathrm{~d} x \\
& =4 \int_{-3}^{3}\left(\frac{3^{8}}{2}-2 \cdot 3^{7}+\frac{3^{8}}{4}\right) x-\frac{81 x^{3}}{2}+6 x^{7}-\frac{x^{9}}{4} \mathrm{~d} x \\
& =0,
\end{aligned}
$$

as x, x^{3}, x^{7} and x^{9} are all odd functions. In retrospect, we could have decide very early on that the integral is zero;

$$
J(x)=\int_{x^{2}}^{9} y\left(\int_{0}^{9-y} z \mathrm{~d} z\right) \mathrm{d} y
$$

is clearly an even function of x, so that $x J(x)$ is an odd function.
6 . This is a region of type 4 ; we view this as an elementary region of type 1 . The projection of W onto the $x y$-plane is the elementary region of type 2 bounded by $x=0, y=3$ and $y=x$.

$$
\begin{aligned}
\iiint_{W} z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z & =\int_{0}^{3}\left(\int_{x}^{3}\left(\int_{0}^{\sqrt{9-y^{2}}} z \mathrm{~d} z\right) \mathrm{d} y\right) \mathrm{d} x \\
& =\int_{0}^{3}\left(\int_{x}^{3}\left[\frac{z^{2}}{2}\right]_{0}^{\sqrt{9-y^{2}}} \mathrm{~d} y\right) \mathrm{d} x \\
& =\int_{0}^{3}\left(\int_{x}^{3} \frac{9-y^{2}}{2} \mathrm{~d} y\right) \mathrm{d} x \\
& =\frac{1}{2} \int_{0}^{3}\left[9 y-\frac{y^{3}}{3}\right]_{x}^{3} \mathrm{~d} x \\
& =\frac{1}{2} \int_{0}^{3} 18-9 x+\frac{x^{3}}{3} \mathrm{~d} x \\
& =\frac{1}{2}\left[18 x-\frac{9 x^{2}}{2}+\frac{x^{4}}{12}\right]_{0}^{3} \\
& =3^{3}-\frac{3^{4}}{4}+\frac{3^{3}}{8} \\
& =\frac{3^{3}}{8}(8-6+1) \\
& =\frac{81}{8}
\end{aligned}
$$

7. This is the region bounded by the planes $y= \pm 1, x=y^{2}, z=0$ and $x+z=1$. So the other five ways to write this region are:

$$
\begin{aligned}
& \int_{0}^{1}\left(\int_{-\sqrt{x}}^{\sqrt{x}}\left(\int_{0}^{1-x} f(x, y, z) \mathrm{d} z\right) \mathrm{d} y\right) \mathrm{d} x \\
& \int_{0}^{1}\left(\int_{0}^{1-x}\left(\int_{-\sqrt{x}}^{\sqrt{x}} f(x, y, z) \mathrm{d} y\right) \mathrm{d} z\right) \mathrm{d} x \\
& \int_{0}^{1}\left(\int_{0}^{1-z}\left(\int_{-\sqrt{x}}^{\sqrt{x}} f(x, y, z) \mathrm{d} y\right) \mathrm{d} x\right) \mathrm{d} z \\
& \int_{-1}^{1}\left(\int_{0}^{1-y^{2}}\left(\int_{y^{2}}^{1-z} f(x, y, z) \mathrm{d} x\right) \mathrm{d} z\right) \mathrm{d} y \\
& \int_{0}^{1}\left(\int_{\sqrt{1-z}}^{\sqrt{1-z}}\left(\int_{y^{2}}^{1-z} f(x, y, z) \mathrm{d} x\right) \mathrm{d} y\right) \mathrm{d} z
\end{aligned}
$$

8. T is a linear transformation; therefore it takes straight lines to straight lines. So D is the parallelogram with vertices
$T(0,0)=(0,0) \quad T(1,3)=(11,2) \quad T(-1,2)=(4,3) \quad T(0,5)=(15,5)$.
9. Since T is supposed to take $(0,5)$ to $(4,1)$, it must take $(0,1)$ to $(4 / 5,1 / 5)$. Since T is supposed to take $(-1,3)$ to $(3,2)$ and $(1,2)$ to $(1,-1)$ it should take

$$
(5,0)=3(1,2)-2(-1,3)
$$

to

$$
3(3,2)-2(1,-1)=(7,8)
$$

Therefore

$$
T(1,0)=(7 / 5,8 / 5)
$$

Therefore

$$
T(u, v)=\left(\begin{array}{ll}
7 / 5 & 4 / 5 \\
8 / 5 & 1 / 5
\end{array}\right)\binom{u}{v}
$$

10. We have $x=u$ and $y=(v+u) / 2$. The Jacobian is

$$
\frac{\partial(x, y)}{\partial(u, v)}(u, v)=\left|\begin{array}{cc}
1 & 0 \\
1 / 2 & 1 / 2
\end{array}\right|=\frac{1}{2}
$$

This is nowhere zero. As the map is linear, it follows that the map is injective, and so by the Inverse function theorem it defines a diffeomorphism. Therefore

$$
\begin{aligned}
\int_{0}^{2}\left(\int_{x / 2}^{(x / 2)+1} x^{5}(2 y-x) e^{(2 y-x)^{2}} \mathrm{~d} x\right) \mathrm{d} y & =\frac{1}{2} \int_{0}^{2}\left(\int_{0}^{2} u^{5} v e^{v^{2}} \mathrm{~d} v\right) \mathrm{d} u \\
& =\frac{1}{4} \int_{0}^{2} u^{5}\left[e^{v^{2}}\right]_{0}^{2} \mathrm{~d} u \\
& =\frac{e^{4}-1}{4} \int_{0}^{2} u^{5} \mathrm{~d} u \\
& =\frac{e^{4}-1}{24}\left[u^{6}\right]_{0}^{2} \\
& =\frac{8\left(e^{4}-1\right)}{3}
\end{aligned}
$$

11. Let $u=2 x+y$ and $v=x-y$. Then

$$
\frac{\partial(u, x)}{\partial(x, y)}(x, y)=\left|\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right|=-3
$$

So

$$
\frac{\partial(x, y)}{\partial(u, v)}(u, v)=-\frac{1}{3}
$$

This is nowhere zero. As the map is linear, it follows that the map is injective, and so by the Inverse function theorem it defines a diffeomorphism. Therefore,

$$
\begin{aligned}
\iint_{D}(2 x+y)^{2} e^{x-y} \mathrm{~d} x \mathrm{~d} y & =\frac{1}{3} \int_{1}^{4}\left(\int_{-1}^{1} u^{2} e^{v} \mathrm{~d} v\right) \mathrm{d} u \\
& =\frac{1}{3} \int_{1}^{4} u^{2}\left[e^{v}\right]_{-1}^{1} \mathrm{~d} u \\
& =\frac{e-e^{-1}}{3} \int_{1}^{4} u^{2} \mathrm{~d} u \\
& =\frac{e-e^{-1}}{9}\left[u^{3}\right]_{1}^{4} \\
& =7\left(e-e^{-1}\right)
\end{aligned}
$$

12. Let $u=y+2 x$ and $v=2 y-x$. Then D^{*} is the region

$$
[0,5] \times[-5,0],
$$

in $u v$-coordinates.

$$
\frac{\partial(u, x)}{\partial(x, y)}(x, y)=\left|\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right|=5
$$

So

$$
\frac{\partial(x, y)}{\partial(u, v)}(u, v)=\frac{1}{5}
$$

This is nowhere zero. As the map is linear, it follows that the map is injective, and so by the Inverse function theorem it defines a diffeomorphism. Therefore

$$
\begin{aligned}
\iint_{D} \frac{2 x+y-3}{2 y-x+6} \mathrm{~d} x \mathrm{~d} y & =\frac{1}{5} \int_{0}^{5}\left(\int_{-5}^{0} \frac{u-3}{v+6} \mathrm{~d} v\right) \mathrm{d} u \\
& =\frac{1}{5} \int_{0}^{5}(u-3)[\ln (v+6)]_{-5}^{0} \mathrm{~d} u \\
& =\frac{\ln 6}{5} \int_{0}^{5}(u-3) \mathrm{d} u \\
& =\frac{\ln 6}{5}\left[\frac{u^{2}}{2}-3 u\right]_{0}^{5} \\
& =\ln 6\left(\frac{5}{2}-3\right) \\
& =-\frac{\ln 6}{2}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.022 Calculus of Several Variables

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

