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MODEL ANSWERS TO HWK #9 

1. There are a number of ways to proceed; probably the most straight
forward is to view the region D as something of type 2: �� � 2 �� 2−y � 
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2. There are a number of ways to proceed; probably the most straight
forward is to view the region D as something of type 1: 
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The region in question is bounded by the curves x = 0, y = 0 and 
y2 = 4 − x. So, reversing the order of integration, we get 
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5. This is a region of type 4; we view this as an elementary region of 
type 1. The projection of W onto the xy-plane is the elementary region 
of type 2 bounded by y = x2 and y = 9. 
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as x, x3 , x7 and x9 are all odd functions. In retrospect, we could have 
decide very early on that the integral is zero; 

� 9 �� 9−y � 

J(x) = y z dz dy, 
x2 0 

is clearly an even function of x, so that xJ(x) is an odd function. 
6. This is a region of type 4; we view this as an elementary region of 
type 1. The projection of W onto the xy-plane is the elementary region 
of type 2 bounded by x = 0, y = 3 and y = x. 
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7. This is the region bounded by the planes y = ±1, x = y2 , z = 0 and 
x + z = 1. So the other five ways to write this region are: � 1 
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8. T is a linear transformation; therefore it takes straight lines to 
straight lines. So D is the parallelogram with vertices 

T (0, 0) = (0, 0) T (1, 3) = (11, 2) T (−1, 2) = (4, 3) T (0, 5) = (15, 5). 

9. Since T is supposed to take (0, 5) to (4, 1), it must take (0, 1) to 
(4/5, 1/5). Since T is supposed to take (−1, 3) to (3, 2) and (1, 2) to 
(1, −1) it should take 

(5, 0) = 3(1, 2) − 2(−1, 3), 

to 

3(3, 2) − 2(1, −1) = (7, 8). 

Therefore 

T (1, 0) = (7/5, 8/5). 

Therefore � �� � 
7/5 4/5 u 

T (u, v) = .
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10. We have x = u and y = (v + u)/2. The Jacobian is 

∂(x, y) � 1 0 � 1 
∂(u, v)

(u, v) = �� 1/2 1/2�� = 2 
. 
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This is nowhere zero. As the map is linear, it follows that the map is

injective, and so by the Inverse function theorem it defines a diffeomor 

phism. Therefore
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11. Let u = 2x + y and v = x − y.
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This is nowhere zero. As the map is linear, it follows that the map is

injective, and so by the Inverse function theorem it defines a diffeomor 
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12. Let u = y + 2x and v = 2y − x. Then D∗ is the region 

[0, 5] × [−5, 0], 

in uv-coordinates.
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So
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This is nowhere zero. As the map is linear, it follows that the map is 
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