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MODEL ANSWERS TO HWK #8 
(18.022 FALL 2010) 

(1) (4.2.1) (a) �f(x, y) = (4 − 2x, 6 − 2
2 
y) = (0, 0) ⇒ (x, y) = (2, 3). 

(b) f(2 + s, 3 + t) − f(2, 3) = −s − t2 < 0 for all s, t. ∴ (2, 3) is the maximum point. 

(c) Hf(2, 3) = 
−
0
2 
−
0
2 

. d1 = −2 < 0 and d2 = 4 > 0, hence it is negative definite. 

So (2, 3) is locally maximum. 
(2) (4.2.6)	�f(x, y) = (−2y2 + 3x2 − 1, 4y3 − 4xy) = (0, 0). Therefore y3 = xy. If y = 0, 

then x = 1 , −1 . If y = 0, then y2 = x. So 3x2 = 0 and x = 1 . But since √
3 
√

3 
�	 − 2x − 1 1, −

3 

x = y2 ≥ 0, x = 1. So the critical points are ( 1 , 0), ( −1 , 0), (1, 1) and (1, −1). Since the �	 � 
√

3 
√

3 

Hessian is Hf(x, y) = 
6x −

2 
4y 

, 

2

−√4
3 
y 12

0 
y − 4x 

• at ( √1
3 
, 0): Hf =

0 −4 . Saddle point.
√
3


−2
√

3 0 • at ( −1 , 0): Hf = 4 . Saddle point.
√
3 � 

0 �√3


at (1, 1): Hf =
6 −4 

. Local minimum. •	 −4 8 
6 4 • at (1, −1): Hf = 
4 8 

. Local minimum. 

(3) (4.2.8) �f(x, y) = (ex sin y, ex cos y) = (0, 0). Since ex = 0 for all � x, we have sin y = cos y = 
0. But there’s no such y. So there’s no critical point. 

(4) (4.2.22) (a) �f(x, y) = (2kx − 2y, −2x + 2ky) = (0, 0) at (0, 0), so it’s a critical point. 

Hf(0, 0) = −
2k 

2 
−
2k 

2 
, and d1 = 2k, d2 = 4k2 − 4. So (0,0) is a nondegenerate local 

minimum (i.e. the Hessian is positive definite) iff k > 1. It is local maximum (i.e. the 
Hessian is negative definite) iff k < −1. 

(b) �g(x, y, z) = (2kx + kz, −2z − 2y, kx − 2y + kz) = (0, 0, 0) at (0, 0, 0), so it’s a critical ⎛	 ⎞ 
2k 0 k 

point. Hf(0, 0, 0) = ⎝ 0 −2 −2 ⎠, and d1 = 2k, d2 = −4k, d3 = −2k2 − 8k. So (0,0,0) 
k −2 k 

is a nondegenerate local maximum (i.e. the Hessian is negative definite) iff k < −4. On the 
other hand, (0,0,0) cannot be a nondegenrate local minimum (i.e. the Hessian is positive 
definite). 

(5) (4.2.23) (a) �f(x, y) = (2ax, 2by) = (0, 0) (x, y) = (0, 0). So the origin is the only critical � � ⇒
2a 0 

point. Hf(0, 0) = is positive definite iff a > 0, b > 0, and negative definite iff 
0	 2b 
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a < 0, b < 0. So the origin is a local minimum if a, b > 0, local maximum if a, b < 0, and 
saddle point otherwise. 

(b) �f(x, y, z) = (2ax, 2by, ⎛2cz) = (0, 0, 0)⎞⇒ (x, y, z) = (0, 0, 0). So the origin is the only 
2a 0 0 

critical point. Hf(0, 0, 0) = ⎝ 0 2b 0 ⎠ is positive definite iff a > 0, b > 0, c > 0, and 
0 0 2c 

negative definite iff a < 0, b < 0, c < 0. So the origin is a local minimum if a, b, c > 0, local 
maximum if a, b, c < 0, and saddle point otherwise. 

(c) The very same argument as in (a) and (b) says the origin is the only critical point. 
Also the Hessian is the diagonal matrix with 2ai at each i-th diagonal entry. Clearly it is 
positive definite iff all ai are positive, and negative definite iff all ai are negative. So the 
origin is a local minimum if all ai are positive, local maximum if all ai are negative, saddle 
point otherwise. 

(6) (4.2.33) Solve �f(x, y) = (cos x cos y, − sin x sin y) = (0, 0) where 0 < x < 2π and 0 < y < 
2π. If cos x = 0 then sin x = 0, so sin y = 0, and (x, y) = (π/2, π), (3π/2, π). If cos x = 0 then 
cos y = 0, so sin y = 0 and sin x = 0. So (x, y) = (π, π/2), (π, 3π/2). Evaluating f at each 
of these critical points, we get f(π/2, π) = −1, f(3π/2, π) = 1, f(π, π/2) = f(π, 3π/2) = 0. 
Now look at the boundaries. If x = 0 or x = 2π, then f(x, y) = 0. If y = 0 or y = 2π, 
then f(x, y) = sin x, hence the maximum is 1 when x = π/2 and the minimum is -1 when 
x = 3π/2. Therefore comparing all the values, we conclude that the absolute maximum 
value of f is 1, and the absolute minimum value of f is -1 in R. (Actually in this problem, 
if one notices that f cannot be greater than 1 or less than -1, just finding points in R where 
f has value 1 or -1 confirms you that the absolute maximum and minimum values of f are 
1 and -1.) 

(7) (4.2.46(b)) Solving �f(x, y) = (3yex −3e3x , 3ex �−3y2) = (0, 0), we get ex = y2 , 3y3 −3y2 = 0. 

So (0, 1) is the only critical point. Hf(0, 1) = 
−6 3 

is negative definite, hence (0, 1)
3 −6 

is a local maximum. However, let us fix x = 0 and send y to the negative infinity, then 
limy→−∞ f(0, y) = limy→−∞ 3y − 1 − y3 Therefore f does not have a global maximum. = ∞. ⎛ ⎞ ⎛ ⎞ 

yz 2(y + z) 
(8) (i) Using Lagrange multiplier method, we get ⎝ zx ⎠ = λ ⎝ 2(z + x) ⎠. So (y − x)z = 

xy 2(x + y) 
2λ(y − x). If x =� y then z = 2λ, so 2λy = 2λ(y + 2λ), and 2λ = z = 0, and xy = 0, 
this is impossible since a = 0. So x = y. Similarly repeat this argument, and we get 

2 
�

a a a x = y = z. So 6x = a implies (x, y, z) = ( 
6 , 6 , 6 ) is the only critical point. 

√
a a(ii) Without loss of generality, let x < 

3
√

6 
at Q. Since yz < xy + yz + xz = 

2 , it implies 

that V (Q) = xyz < 
3

√
√a 

6 
a 
2 = (a 

6 )
3/2 = V (P )· 

(iii) K is defined by closed relations, hence it is closed. To prove that K is bounded, notice 
a 2

√
athat = xy + yz + zx = x(y + z) + yz > x(y + z) ≥ x. Hence x is bounded above 

2 3
√

6 
as well as below. Similarly y, z are also bounded. Hence K is contained in a bounded 
box, hence K is bounded. 
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(iv) Since K is compact, there exists a maximum point of V . By (i), we know that V has the √
aonly critical point P . To see the values of V on the boundaries of K, let x = 

3
√

6 
without 

loss of generality. Since yz < xy + yz + xz = a 
2 , we have xyz = 

3

√
√a 

6 
yz < (a 

6 )
3/2 = V (P ). 

Hence the value of V on the boundary is always less than V (P ). Therefore V has the 
maximal value on K at P . 

(v) By (ii),	 we know that V has smaller value than V (P ) at any point outside of K. 
Therefore V has the maximal value on A at P . 

(9) (4.3.2) �f(x, y) = (0, 1) = λ�g(x, y) = λ(4x, 2y). ∴ (x, y) = (0, 2), (0, −2). 
(10) (4.3.8) (1, 1, 1) = λ(−2x, 2y, 0) + µ(1, 0, 2). So µ = 1/2, 2λy = 1, −2λx + µ = 1. Therefore 

λ = ±
√

3/4 and (x, y, z) = (−1/
√

3, 2/
√

3, (1 + 1/
√

3)/2), (1/
√

3, −2/
√

3, (1 − 1/
√

3)/2). 
(11) (4.3.18) Since the sphere is	 closed and bounded, it is compact. Hence there must be 

maximum and minimum points. By Lagrange multiplier method, we have (1, 1, −1) = 
λ(2x, 2y, 2z), hence x = y = −z. From 3x2 = 81, we get two critical points (x, y, z) = 
(3
√

3, 3
√

3, −3
√

3), (−3
√

3, −3
√

3, 3
√

3). At each point, the value of f is 9
√

3 and −9
√

3. 
These are the maximum and minimum values. 
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