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MODEL ANSWERS TO HWK #6 
(18.022 FALL 2010) 

(1) The curve C is given in rectangular coordinates by �r(θ) = (f(θ) cos(θ), f(θ) sin(θ)). Then 

�r�(θ) = (f �(θ) cos(θ) − f(θ) sin(θ), f �(θ) sin(θ) + f(θ) cos(θ)), 

and the arc length of C is given by � θ 

s(θ) = ��r�(τ)� dτ 
α 

θ � 
= (f �(τ) cos(τ) − f(τ ) sin(τ))2 + (f �(τ) sin(τ) + f(τ) cos(τ))2dτ 

α� θ � 
= f(τ)2 + f �(τ)2dτ. 

α 

(2) (3.1.18) 
At t = 1, the path x(t) = (cos(et), 3t2, t) passes in point x(1) = (cos(e), 3, 1) and has 

velocity x(1) = (−et sin(et), 6t, 1)|t=1 = (−e sin(e), 6, 1). Thus, the line tangent to the path 
at t = 1 is 

l(t) = (cos(e), 3, 1) + (t − 1)(−e sin(e), 6, 1) 

= (cos(e) + e sin(e) − t sin(e), 6t − 3, t) 

(3) (3.1.26) 
(a) For the balls to collide, they have to be at the same point at the same time: t2 − 2 = t 

and t2 − 1 = 5 − t2, which solving for t yields t = 2, and x(2) = y(2) = (2, 1).
2 

(b) We have to find the angle between x�(2) and y�(2). We have x�(2) = (2t, t)|t=2 = (4, 2) 
and y�(2) = (1, −2t)|t=2 = (1, −4), so the angle is 

(4, 2) (1, −4) −4 −2 
arc cos 

· 
= arc cos √

20
√

17 
= arc cos √

85 
≈ 1.79 rad. 

�(4, 2)� �(1, −4)� 

(4) (3.1.30) 
(a) We want to show that �x(t)� = 1, or equivalently �x(t)� 2 = 1: 

�x(t)� 2 = cos 2 t + cos2 t sin2 t + sin4 t 

= cos 2 t + (cos2 t + sin2 t) sin2 t 

= cos 2 t + sin2 t 

= 1. 
1 
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Figure 1. Astroid of Problem 6 

(b) We want to show that x(t) v(t) = 0, where the velocity vector is v(t) = x�(t) = · 
(− sin t, − sin2 t + cos2 t, 2 sin t cos t): 

x(t) v(t) = − cos t sin t − cos t sin3 t + cos3 t sin t + 2 sin3 t cos t· 
= cos t sin t(−1 + sin2 t + cos2 t) 

= 0. 

(c) If x(t) is a differentiable path that lies on a sphere centered at the origin, then x(t) 
has constant length equal to the radius of that sphere. Proposition 1.7 then tells us that for 
all values of the parameter t, the position vector x(t) is perpendicular to its derivative dx

dt 
(t) , 

which is the velocity vector v(t). 
(5) (3.1.32) 

The function �x(t)� 2 has a minimum at t0, so its derivative must vanish: 
2d �x

dt 
(t)� |t=t0 = 2x(t0) · x�(t0) = 0. 

(6) (3.2.7) 
For a sketch of the curve, see Figure 1. 
The velocity vector and the speed for this path are 

x�(t) = (−3a cos 2 t sin t, 3a sin2 t cos t) 

�x�(t)� = 9a2 cos4 t sin2 t + 9a sin4 t cos2 t = 3a sin t cos t. 

Since the curve is piecewise C1, the length of the total curve is the sum of the lengths of 
the four smooth pieces, or since the pieces are all congruent, the total length is 

π� � �π 
22 sin2 t 

L = 4 �x�(t)� dt = 12a = 6a. 
20 t=0 

(7) (3.2.12) 
(a) The velocity vector and speed for this path are 

x�(t) = (e at(a cos(bt) − b sin(bt)), e at(a sin(bt) + b cos(bt)), ae at) 

�x�(t)� = e at (a cos(bt) − b sin(bt))2 + (a sin(bt) + b cos(bt))2 + a2 

= e at
√

2a2 + b2 . 
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The arc length parameter is �2t ate
e aτ 
√

2a2 + b2dτ = 
− 1√

2a
b
at2 + b2 = (es(t) =
 − 1) 2 +


a
 a
0 �2b 1at s(b) Solving s = (e
 − 1) 2 +
 for t we get t =
 log Δ(s), where Δ(s) = 1+ � .2a a 
2+( b )a 

Then,

b b 

x(s) = Δ(s) cos( log Δ(s)), sin( log Δ(s)), 1 . 
a a 

(8) (a)Differentiating and using the Frenet-Serret formulas T� �(s) = κ(s)N� (s), N� �(s) = −κ(s)T�(s)+ 
τ(s)B� (s) and B� �(s) = −τ(s)N� (s) we obtain 

2 2 2d

T�1(s) − T�2(s) N�1(s) − N�2(s) B�1(s) − B�2(s)+
 +
 =


ds


(T�1 − � ·
(T�1
� − T�2

�) + ( N�1 − N�2) (N�1
� − N�2

�) + ( B�1 − B�2) (B�1
� − B�2

�· · ) =
= 2
 T2) 

= −2 κ(T�1 · N�2 + T�2 · N�1) − κ(N�1 · T�2 + N�2 · T�1) + τ(N�1 · B�2 + N�2 · B�1) − τ(B�1 · N�2 + B�2 · N�1) = 

= 0. 

Since the derivative with respect to s is zero, the quantity above is constant as a function 
of s. 

(b) At s = a the quantity above is equal to zero. But because it constant as a function 
of s, it must be constant equal to zero. It follows that for all s, we have T�1(s) = T�2(s) (and 
also N�1(s) = N�2(s) and B�1(s) = B�2(s)). Since we can get the position vectors of the paths 
�ri (i = 1, 2) by integrating the velocity vector T�i(s), they must coincide: 

s s 

�r1(s) = �r1(a) + �T1(t)dt = �r2(a) + �T2(t)dt = �r2(s). 
a a 

(9) (a) We simply have to show that ��r�(s)� = 1: 

a a b a2 + b2 

��r�(s)� = (− 
c 

sin(s/c))2 + ( 
c 

cos(s/c))2 + ( 
c 
)2 = 

c2 
= 1. 

(b) 
a a b 

T�(s) = �r�(s) = (− sin(s/c), cos(s/c), ) 
c c c 

N� (s) =

dT�(s)/ds


dT�(s)/ds

=


(− a cos(s/c), − a sin(s/c), 0)2 2c c = (− cos(s/c), − sin(s/c), 0)a 
2c

i 
B� (s) = T�(s) × N� (s) =


b b a

= ( sin(s/c), − cos(s/c), ) 

c c c 

j k

a a b−
− cos(s/c) 

sin(s/c)
 cos(s/c)

c c c 

− sin(s/c) 0
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(c)


κ(s) =

dT�(s)


ds

a


= 
2c


dB� (s)
= −τ(s)N� (s)

ds 
b b ⇐⇒( 
c

cos(s/c),
c

sin(s/c), 0) = −τ(s)(− cos(s/c), − sin(s/c), 0)
2 2 

b ⇐⇒τ(s) = 
c2 

(10) The helix in Problem 9 above has constant curvature and torsion, and by Theorem 2.5, any 
curve with constant curvature and torsion is congruent to such a helix. To find out which 
helix we solve for a, b and c the following equations: 

κ = 
a

, τ = 
b 

, a 2 + b2 = c 2 . 
2 2c c

Writing κ2 + τ 2 = a
c

2 
+ 

c
b2 

= 
c
1 , we conclude that 4 4 2 

κ τ 1 
a = 

κ2 + τ 2 
, b = 

κ2 + τ 2 
, c = √

κ2 + τ 2 
. 

(11) (a) The vectors T�(a), N� (a) and B� (a) are mutually orthogonal and all have length 1, so we 
must have 

N� (a) = B� (a) × T�(a) = (
−1 

, 
2 
, 
2
) × (

2 
, 
2 
, 
−1

) = (
−2 

, 
1 
, 
−2

). 
3 3 3 3 3 3 3 3 3 

(b) Dotting with T�(s) on both sides of the Frenet-Serret formula 

dN� (s)
= −κ(s)T�(s) + τ (s)B� (s)

ds 
N(s) 2we obtain d �

T�(s) = −κ(s), and so κ(a) = −(−4, 2, 5) (2 , , −1 ) = 3.
ds 3 3 3

· · 
(c) Dotting with B� (s) on both sides of the Frenet-Serret formula 

dN� (s)
= −κ(s)T�(s) + τ (s)B� (s)

ds 

we obtain dN� (s) B� (s) = τ(s), and so τ(a) = (−4, 2, 5) (−1 , 2 , 2 ) = 6.
ds 3 3 3

· · 
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