MODEL ANSWERS TO HWK \#12

(18.022 FALL 2010)
(1) (i) $\nabla \times F=(2 b y-2 y) \hat{\imath}+(2 y-2 a y) \hat{k}=0$. Hence $a=b=1$.
(ii) $f_{x}=y^{2}$, so $f=x y^{2}+g(y, z) . f_{y}=2 x y+g_{y}=2 x y+2 y z$, so $g=y^{2} z+h(z)$. Now, $f_{z}=y^{2}+h^{\prime}=y^{2}+z^{2}$, and $h=\frac{z^{3}}{3}$. Therefore $f=x y^{2}+y^{2} z+\frac{z^{3}}{3}$.
(iii) For conservative $F, \int_{C} F \cdot d \mathbf{s}=f(b)-f(a)$ for the end points a and b of C. So the surface defined by $f(x, y, z)=c$ for some constant c will do. Therefore $x y^{2}+y^{2} z+\frac{z^{3}}{3}=c$ for some constant.
(2) Parameterize the surface by $\mathbf{X}(x, y)=(x, y, y)$, where the range of x and y are the rectangle $[0,1] \times[0,2]$. Then $X_{x} \times X_{y}=(0,-1,1)$. So $\iint_{S} F \cdot d \mathbf{S}=\int_{0}^{2} \int_{0}^{1} x^{2}+y^{2} d x d y=\frac{10}{3}$.
(3) F is smooth everywhere except those three points. By Green's theorem, $\oint_{C_{2}\left(P_{0}\right)} F \cdot d \mathbf{s}+$ $\oint_{C_{1}\left(P_{1}\right)} F \cdot d \mathbf{s}=\oint_{C_{6}\left(P_{0}\right)} F \cdot d \mathbf{s}$, hence $\oint_{C_{1}\left(P_{1}\right)} F \cdot d \mathbf{s}=1-(-2)=3$. Similarly, since $\oint_{C_{6}\left(P_{0}\right)} F$. $d \mathbf{s}+\oint_{C_{1}\left(P_{2}\right)} F \cdot d \mathbf{s}=\oint_{C_{10}\left(P_{0}\right)} F \cdot d \mathbf{s}$, hence $\oint_{C_{1}\left(P_{2}\right)} F \cdot d \mathbf{s}=3-1=2$. Now, $\oint_{C_{6}\left(P_{2}\right)} F \cdot d \mathbf{s}=$ $\oint_{C_{1}\left(P_{1}\right)} F \cdot d \mathbf{s}+\oint_{C_{1}\left(P_{2}\right)} F \cdot d \mathbf{s}$, and we get $\oint_{C_{6}\left(P_{2}\right)} F \cdot d \mathbf{s}=3+2=5$.
(4) (6.3.16) $\nabla \times F=0$ gives us $6 x y \sin (x z)+5=-a x y \sin (x z)+b,-a y z \sin (x z)=6 y z \sin (x z)$. Hence $a=-6, b=5$.
(5) (7.1.4)
(a) $X_{s} \times X_{t}=\left(-s^{2} \cos t,-s^{2} \sin t, 2 s^{3}\right)$. Hence, ($-1,0,-2$).
(b) By (a), $-(x-1)-2(z+1)=0$, or $x+2 z=-1$.
(c) $x^{2}+y^{2}-z^{4}=0$.
(6) (7.1.20) The normal vector field is $\mathbf{N}(s, t)=\left|\begin{array}{ccc}\lambda \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \theta & \sin \theta & 0 \\ -r \sin \theta & r \cos \theta & 1\end{array}\right|=(\sin \theta,-\cos \theta, r)$. The surface area will be

$$
\begin{aligned}
\int_{0}^{2 \pi n} \int_{0}^{1} \sqrt{\sin ^{2} \theta+\cos ^{2} \theta+r^{2}} d r d \theta & =2 \pi n \int_{0}^{1} \sqrt{1+r^{2}} d r=2 \pi n \int_{0}^{\operatorname{arcsinh}(1)} \cosh ^{2} t d t \\
& =\pi n \int_{0}^{\operatorname{arcsinh}(1)}(1+\cosh 2 t) d t=\pi n(\operatorname{arcsinh} 1+\sqrt{2}) .
\end{aligned}
$$

(7) (7.2.13)

$$
\begin{aligned}
\iint_{S} x^{2} d S & =\frac{1}{2} \iint_{S}\left(x^{2}+y^{2}\right) d S=\frac{1}{2}\left(\iint_{\text {bottom }} r^{2} d S+\iint_{\text {top }} r^{2} d S+\iint_{\text {side }} 9 d S\right) \\
& =\int_{0}^{2 \pi} \int_{0}^{3} r^{2} r d r d \theta+\frac{9}{2} \iint_{\text {side }} d S=2 \pi\left(\left.\frac{r^{4}}{4}\right|_{r=0} ^{3}+\frac{9}{2} 2 \pi \cdot 3 \cdot 4=\frac{297}{2} \pi\right.
\end{aligned}
$$

(8) (7.2.17) The unit normal vectors to the top (\mathbf{k}), bottom $(-\mathbf{k})$, and side $\left(\frac{1}{3}(x \mathbf{i}+y \mathbf{j})\right)$ surfaces of the cylinder are perpendicular to the vector field $\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j}$ being integrated, so $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=0$.
(9) (7.3.11) The boundary of S is the circle $y=1, x^{2}+z^{2}=9$, which also bounds the flat disc $y=1, x^{2}+z^{2} \leq 9$. For this disc, the rightward-pointing normal is \mathbf{j}, so we only need to calculate the second component of $\nabla \times \mathbf{F}$, which will be 5 .

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s}=\iint_{D}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{D} 5 d S=5 \pi 3^{3}=45 \pi .
$$

(10) (7.3.13)
(a) $\sin (2 t)=2(\cos t)(\sin t)$, so $\mathbf{x}(t)=(\cos t, \sin t, \sin (2 t))$ lies on the surface $z=2 x y$.
(b) The closed curve above is the boundary of the surface $z=2 x y, x^{2}+y^{2} \leq 1$, which in turn is parametrized by $\mathbf{X}(r, t)=\left(r \cos t, r \sin t, 2 r^{2} \cos t \sin t\right)$, with $0 \leq t \leq 2 \pi$ and $0 \leq r \leq 1$. The normal vector field is $\mathbf{N}(r, t)=\frac{\partial \mathbf{X}}{\partial r} \times \frac{\partial \mathbf{X}}{\partial t}=\left(-2 r^{2} \sin t,-2 r^{2} \cos t, r\right)$. Also, the curl of the vector field $\mathbf{F}(x, y, z)=\left(y^{3}+\cos x, \sin y+z^{2}, x\right)$ is $\nabla \times \mathbf{F}=$ $\left(-2 z,-1,-3 y^{2}\right)$. Then,

$$
\begin{gathered}
\oint_{C} \mathbf{F} \cdot d \mathbf{s}=\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}= \\
=\int_{0}^{2 \pi} \int_{0}^{1}\left(-4 r^{2} \cos t \sin t,-1,-3 r^{2} \sin ^{2} t\right) \cdot\left(-2 r^{2} \sin t,-2 r^{2} \cos t, r\right) d r d t=\ldots=-\frac{3 \pi}{4} .
\end{gathered}
$$

(11) (7.3.16) Let D be the solid unit cube and B its bottom square. Then by Gauss' theorem, $\iiint_{D} \nabla \cdot \mathbf{F} d V=\iint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \mathbf{F} \cdot d \mathbf{S}+\iint_{B} \mathbf{F} \cdot d \mathbf{S}$. The we have

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iiint_{D}\left(2 x z \mathrm{e}^{x^{2}}+3-7 y z^{6}\right) d V-\iint_{B} \mathbf{F} \cdot(-\mathbf{k}) d S \\
& =\int_{0}^{1} 2 x \mathrm{e}^{x^{2}} d x \int_{0}^{1} z d z+3-\int_{0}^{1} y d y \int_{0}^{1} 7 z^{6} d z+\int_{0}^{1} \int_{0}^{1} 2 d x d y=4+\frac{\mathrm{e}}{2}
\end{aligned}
$$

(12) (7.3.18)
(a) The boundary of D is the union of S_{7} (with normal pointed outward) and S_{5} (with normal pointad inward):

$$
\iiint_{D} \nabla \cdot \mathbf{F} d V=\iint_{S_{7}} \mathbf{F} \cdot d \mathbf{S}-\iint_{S_{5}} \mathbf{F} \cdot d \mathbf{S}=7 a+b-5 a-b=2 a .
$$

(b) If $\mathbf{F}=\nabla \times \mathbf{G}$, we use Gauss' theorem followed by Stokes' theorem. Note that ∂D is already a surface without boundary, so $\partial(\partial D)$ is the empty set:

$$
\iiint_{D} \nabla \cdot \nabla \times \mathbf{G} d V=\iint_{\partial D} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\int_{\partial(\partial D)} \mathbf{F} \cdot d \mathbf{s}=0 .
$$

(13) (7.3.19)
(a) At points of S, we have

$$
\frac{\partial f}{\partial n}=\nabla f \cdot \mathbf{n}=\left(\frac{2 x}{a^{2}}, \frac{2 y}{a^{2}}, \frac{2 z}{a^{2}}\right) \cdot\left(\frac{x}{a}, \frac{y}{a}, \frac{z}{a}\right)=\frac{2\left(x^{2}+y^{2}+z^{2}\right)}{a^{3}}=\frac{2}{a},
$$

so

$$
\iint_{S} \frac{\partial f}{\partial n} d S=\iint_{S} \frac{2}{a} d S=\frac{2}{a} \frac{1}{8} 4 \pi a^{2}=\pi a .
$$

(b) We have $\nabla \cdot(\nabla f)=\nabla \cdot\left(\frac{2 x}{\rho^{2}}, \frac{2 y}{\rho^{2}}, \frac{2 z}{\rho^{2}}\right)=\ldots=\frac{2}{\rho^{2}}$, so $\iiint_{D} \nabla \cdot(\nabla f) d V=2 \iiint_{D} \frac{1}{\rho^{2}} d V=2 \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{a} \frac{1}{\rho^{2}} \rho^{2} \sin \varphi d \rho d \varphi d \theta=\pi a$.
(c) The three flat quarter circles that are part of ∂D do not contribute anything to $\iint_{S} \nabla f$. $\mathbf{n} d S$. For example, on the bottom quarter circle, $\nabla f(x, y, 0)=\left(\frac{2 x}{\rho^{2}}, \frac{2 y}{\rho^{2}}, 0\right)$ and the unit normal is $-\mathbf{k}$, so $\iint_{\text {bottom }} \nabla f \cdot(-\mathbf{k}) d S=0$. The cases of the other two are similar.

WE HOPE YOU ENJOYED 18.022,

AND GOOD LUCK ON THE FINAL!!!

MIT OpenCourseWare
http://ocw.mit.edu

18.022 Calculus of Several Variables
 Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

