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MODEL ANSWERS TO HWK #12 
(18.022 FALL 2010) 

(1) (i) ∇× F = (2by − 2y)̂ı + (2y − 2ay)k̂ = 0. Hence a = b = 1. 
(ii) fx = y2, so f = xy2 + g(y, z). fy = 2xy + gy = 2xy + 2yz, so g = y2z + h(z). Now, 

fz = y2 + h ′ = y2 + z
� 

2, and h = z
3 

3 2 z
3 

3 
. Therefore f = xy2 + y z + . 

(iii) For conservative F , F ds = f(b) − f(a) for the end points a and b of C. So the 
C 

· 
surface defined by f(x, y, z) = c for some constant c will do. Therefore xy2 +y2z+ z

3 

3 
= c 

for some constant. 
(2) Parameterize the surface by X(x, y) = (x, y, y), where the range of x and y are the rectangle 

[0, 1] × [0, 2]. Then Xx × Xy = (0,−1, 1). So 
�� 

F dS = 
� 

0

2 � 

0

1 
x2 + y2dxdy = 10 .

S 
� 

3
· 

(3) F is smooth everywhere except those three points. By Green’s theorem, 
C2(P0) F ds + 

� � � � 

· 
F ds = F ds, hence F ds = 1 − (−2) = 3. Similarly, since F

C1(P1
� 

) · 
C6(P0) 

� 

· 
C1(P1) 

� 

· 
� 

C6(P0) · 
ds + 

C1(P2) F ds = 
C10(P0) F ds, hence 

C1(P2) F ds = 3 − 1 = 2. Now, 
C6(P2) F ds = 

� 

· 
� 

· 
� 

· · 
F ds + F ds, and we get F ds = 3 + 2 = 5. 

C1(P1) · 
C1(P2) · 

C6(P2) · 
(4) (6.3.16) ∇×F = 0 gives us 6xy sin (xz)+5 = −axy sin (xz)+b, −ayz sin (xz) = 6yz sin (xz). 

Hence a = −6, b = 5. 
(5) (7.1.4) 

(a) Xs × Xt = (−s2 cos t,−s2 sin t, 2s3). Hence, (-1,0,-2). 
(b) By (a), −(x − 1) − 2(z + 1) = 0, or x + 2z = −1. 
(c) x 2 + y 2 z 4 = 0. −

� λi j k 
(6) (7.1.20) The normal vector field is N(s, t) = � cos θ sin θ 0 = (sin θ,− cos θ, r). The 

� −r sin θ r cos θ 1 �


surface area will be

� 2πn 1 

� 
1 arcsinh(1)


sin2 θ + cos2 θ + r2drdθ = 2πn 
√

1 + r2dr = 2πn cosh2t dt

0 0 0 0


= πn 

� arcsinh(1) 

(1 + cosh2t)dt = πn(arcsinh1 +
√

2). 
0 

(7) (7.2.13) 

1 1 
x 2dS = (x 2 + y 2)dS = r 2dS + r 2dS + 9 dS 

S 2 S 2 bottom top side 
� 2π � 3 �� 4 3

9 r � 9 297 
� += r 2r drdθ + dS = 2π 2π 3 4 = π 

2 4 2 
· · 

20 0 side r=0 

(8) (7.2.17) The unit normal vectors to the top (k), bottom (−k), and side (1 (xi + yj)) surfaces 
3 

of the cylinder are perpendicular to the vector field F(x, y, z) = −yi + xj being integrated, 
�� 

so F dS = 0. 
S 

· 
1 
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(9) (7.3.11) The boundary of S is the circle y = 1, x2 + z2 = 9, which also bounds the flat disc 
y = 1, x2 + z2 9. For this disc, the rightward-pointing normal is j, so we only need to ≤
calculate the second component of ∇× F, which will be 5. 

�� � �� �� 

(∇× F) · dS = F · ds = (∇× F) · dS = 5 dS = 5π33 = 45π. 
S ∂S D D 

(10) (7.3.13) 
(a) sin(2t) = 2(cos t)(sin t), so x(t) = (cos t, sin t, sin(2t)) lies on the surface z = 2xy. 
(b) The closed curve above is the boundary of the surface z = 2xy, x2 + y2 ≤ 1, which in 

turn is parametrized by X(r, t) = (r cos t, r sin t, 2r2 cos t sin t), with 0 ≤ t ≤ 2π and 
0 ≤ r ≤ 1. The normal vector field is N(r, t) = ∂

∂r 
X × ∂

∂t 
X = (−2r2 sin t,−2r2 cos t, r). 

Also, the curl of the vector field F(x, y, z) = (y3 + cos x, sin y + z2, x) is ∇ × F = 
(−2z, −1,−3y2). Then, 

F ds = dS = · ∇ × F · 
C S 

� 2π 1 3π 
= (−4r 2 cos t sin t,−1, − 3r 2 sin2 t) · (−2r 2 sin t,−2r 2 cos t, r)dr dt = . . . = −

4 
. 

0 0 

(11) (7.3.16) Let D be the solid unit cube and B its bottom square. Then by Gauss’ theorem, 
��� �� �� �� 

D 
∇ · FdV = F · dS = F · dS + F · dS. The we have 

∂D S B 

xF dS = (2xze 
2 
+ 3 − 7yz 6)dV − F (−k)dS · · 

S D B 
� 1 1 1 1 1 1 

= 2xe x
2 
dx z dz + 3 − y dy 7z 6dz + 2dxdy = 4 + 

e 
. 

20 0 0 0 0 0 

(12) (7.3.18) 
(a) The boundary of D is the union of S7 (with normal pointed outward) and S5 (with 

normal pointad inward): 

∇ · F dV = F · dS − F · dS = 7a + b − 5a − b = 2a. 
D S7 S5 

(b) If F = ∇ × G, we use Gauss’ theorem followed by Stokes’ theorem. Note that ∂D is 
already a surface without boundary, so ∂(∂D) is the empty set: 

D 

∇ · ∇ × G dV = 
∂D 

∇× F · dS = 
∂(∂D) 

F ds = 0.· 

(13) (7.3.19) 
(a) At points of S, we have 

∂f 2x 2y 2z x y z 2(x2 + y2 + z2) 2 
, ) ( , ) = = , 

∂n 
= ∇f · n = ( 

a2 a2 
,
a2 

· 
a a

,
a a3 a 

so 
∂f 2 2 1 

dS = dS = 4πa2 = πa. 
S ∂n S a a 8 
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(b) We have ∇ · (∇f) = ∇ · (2
ρ
x 
2 , 

2
ρ

y 
2 , ρ

2z 
2 ) = . . . = 

ρ
2 
2 , so 

π π a 
2 21 1 ∇ · (∇f) dV = 2 

ρ2 
dV = 2 

ρ2 
ρ2 sin ϕdρ dϕ dθ = πa. 

D D 0 0 0 

(c) The three flat quarter circles that are part of ∂D do not contribute anything to 
S 
∇f

n dS. For example, on the bottom quarter circle, ∇f(x, y, 0) = (2
ρ
x 
2 , 

2
ρ

y 
2 , 0) and the unit 

· 

�� 

normal is −k, so 
bottom ∇f (−k)dS = 0. The cases of the other two are similar. · 

WE HOPE YOU ENJOYED 18.022,


AND GOOD LUCK ON THE FINAL!!!
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