MODEL ANSWERS TO HWK #12 (18.022 FALL 2010)

- (1) (i) $\nabla \times F = (2by 2y)\hat{i} + (2y 2ay)\hat{k} = 0$. Hence a = b = 1.
 - (ii) $f_x = y^2$, so $f = xy^2 + g(y, z)$. $f_y = 2xy + g_y = 2xy + 2yz$, so $g = y^2z + h(z)$. Now, $f_z = y^2 + h' = y^2 + z^2$, and $h = \frac{z^3}{3}$. Therefore $f = xy^2 + y^2z + \frac{z^3}{3}$. (iii) For conservative F, $\int_C F \cdot d\mathbf{s} = f(b) f(a)$ for the end points a and b of C. So the
 - surface defined by f(x, y, z) = c for some constant c will do. Therefore $xy^2 + y^2z + \frac{z^3}{3} = c$ for some constant.
- (2) Parameterize the surface by $\mathbf{X}(x, y) = (x, y, y)$, where the range of x and y are the rectangle
- (a) F is smooth everywhere except those three points. By Green's theorem, $\oint_{C_2(P_0)} F \cdot d\mathbf{s} = \oint_{C_1(P_1)} F \cdot d\mathbf{s} = \oint_{C_1(P_2)} F \cdot d\mathbf{s}$, hence $\oint_{C_1(P_2)} F \cdot d\mathbf{s} = 1 (-2) = 3$. Similarly, since $\oint_{C_6(P_0)} F \cdot d\mathbf{s} = \oint_{C_1(P_1)} F \cdot d\mathbf{s} = \oint_{C_1(P_2)} F \cdot d\mathbf{s}$, hence $\oint_{C_1(P_2)} F \cdot d\mathbf{s} = 3 1 = 2$. Now, $\oint_{C_6(P_2)} F \cdot d\mathbf{s} = \oint_{C_1(P_1)} F \cdot d\mathbf{s} + \oint_{C_1(P_1)} F \cdot d\mathbf{s} + \oint_{C_1(P_2)} F \cdot d\mathbf{s}$, and we get $\oint_{C_6(P_2)} F \cdot d\mathbf{s} = 3 + 2 = 5$. (4) (6.3.16) $\nabla \times F = 0$ gives us form sin (gr) + 5 = 0 gives us form sin (gr) + 5 = 0.
- (4) (6.3.16) $\nabla \times F = 0$ gives us $6xy \sin(xz) + 5 = -axy \sin(xz) + b$, $-ayz \sin(xz) = 6yz \sin(xz)$. Hence a = -6, b = 5.
- (5) (7.1.4)(a) $X_s \times X_t = (-s^2 \cos t, -s^2 \sin t, 2s^3)$. Hence, (-1,0,-2). (b) By (a), -(x-1) - 2(z+1) = 0, or x + 2z = -1. (c) $x^2 + y^2 - z^4 = 0$.

(6) (7.1.20) The normal vector field is $\mathbf{N}(s,t) = \begin{vmatrix} \lambda \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \theta & \sin \theta & 0 \\ -r \sin \theta & r \cos \theta & 1 \end{vmatrix} = (\sin \theta, -\cos \theta, r).$ The surface area will be

$$\int_{0}^{2\pi n} \int_{0}^{1} \sqrt{\sin^{2}\theta + \cos^{2}\theta + r^{2}} dr d\theta = 2\pi n \int_{0}^{1} \sqrt{1 + r^{2}} dr = 2\pi n \int_{0}^{\operatorname{arcsinh}(1)} \cosh^{2} t \, dt$$
$$= \pi n \int_{0}^{\operatorname{arcsinh}(1)} (1 + \cosh 2t) dt = \pi n (\operatorname{arcsinh}(1 + \sqrt{2})).$$

(7) (7.2.13)

$$\iint_{S} x^{2} dS = \frac{1}{2} \iint_{S} (x^{2} + y^{2}) dS = \frac{1}{2} \left(\iint_{\text{bottom}} r^{2} dS + \iint_{\text{top}} r^{2} dS + \iint_{\text{side}} 9 \, dS \right)$$
$$= \int_{0}^{2\pi} \int_{0}^{3} r^{2} r \, dr d\theta + \frac{9}{2} \iint_{\text{side}} dS = 2\pi \left(\frac{r^{4}}{4} \Big|_{r=0}^{3} + \frac{9}{2} 2\pi \cdot 3 \cdot 4 = \frac{297}{2} \pi$$

(8) (7.2.17) The unit normal vectors to the top (**k**), bottom (-**k**), and side $(\frac{1}{3}(x\mathbf{i}+y\mathbf{j}))$ surfaces of the cylinder are perpendicular to the vector field $\mathbf{F}(x, y, z) = -y\mathbf{i} + x\mathbf{j}$ being integrated, so $\iint_S \mathbf{F} \cdot d\mathbf{S} = 0.$

(9) (7.3.11) The boundary of S is the circle $y = 1, x^2 + z^2 = 9$, which also bounds the flat disc $y = 1, x^2 + z^2 \leq 9$. For this disc, the rightward-pointing normal is **j**, so we only need to calculate the second component of $\nabla \times \mathbf{F}$, which will be 5.

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{s} = \iint_{D} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \iint_{D} 5 \, dS = 5\pi 3^{3} = 45\pi.$$
(3.13)

(10) (7.3.13)

- (a) $\sin(2t) = 2(\cos t)(\sin t)$, so $\mathbf{x}(t) = (\cos t, \sin t, \sin(2t))$ lies on the surface z = 2xy.
- (b) The closed curve above is the boundary of the surface $z = 2xy, x^2 + y^2 < 1$, which in turn is parametrized by $\mathbf{X}(r,t) = (r \cos t, r \sin t, 2r^2 \cos t \sin t)$, with $0 \le t \le 2\pi$ and $0 \le r \le 1$. The normal vector field is $\mathbf{N}(r,t) = \frac{\partial \mathbf{X}}{\partial r} \times \frac{\partial \mathbf{X}}{\partial t} = (-2r^2 \sin t, -2r^2 \cos t, r)$. Also, the curl of the vector field $\mathbf{F}(x, y, z) = (y^3 + \cos x, \sin y + z^2, x)$ is $\nabla \times \mathbf{F} = 1$. $(-2z, -1, -3y^2)$. Then,

$$\oint_C \mathbf{F} \cdot d\mathbf{s} = \iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S} =$$
$$= \int_0^{2\pi} \int_0^1 (-4r^2 \cos t \sin t, -1, -3r^2 \sin^2 t) \cdot (-2r^2 \sin t, -2r^2 \cos t, r) dr dt = \dots = -\frac{3\pi}{4}.$$

(11) (7.3.16) Let D be the solid unit cube and B its bottom square. Then by Gauss' theorem, $\iint \int_D \nabla \cdot \mathbf{F} dV = \iint_{\partial D} \mathbf{F} \cdot d\mathbf{S} = \iint_S \mathbf{F} \cdot d\mathbf{S} + \iint_B \mathbf{F} \cdot d\mathbf{S}$. The we have

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{D} (2xze^{x^{2}} + 3 - 7yz^{6})dV - \iint_{B} \mathbf{F} \cdot (-\mathbf{k})dS$$
$$= \int_{0}^{1} 2xe^{x^{2}}dx \int_{0}^{1} z \, dz + 3 - \int_{0}^{1} y \, dy \int_{0}^{1} 7z^{6}dz + \int_{0}^{1} \int_{0}^{1} 2dxdy = 4 + \frac{e}{2}.$$

(12) (7.3.18)

(a) The boundary of D is the union of S_7 (with normal pointed outward) and S_5 (with normal pointad inward):

$$\iiint_D \nabla \cdot \mathbf{F} \, dV = \iiint_{S_7} \mathbf{F} \cdot d\mathbf{S} - \iiint_{S_5} \mathbf{F} \cdot d\mathbf{S} = 7a + b - 5a - b = 2a.$$

(b) If $\mathbf{F} = \nabla \times \mathbf{G}$, we use Gauss' theorem followed by Stokes' theorem. Note that ∂D is already a surface without boundary, so $\partial(\partial D)$ is the empty set:

$$\iiint_D \nabla \cdot \nabla \times \mathbf{G} \, dV = \iint_{\partial D} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \int_{\partial(\partial D)} \mathbf{F} \cdot d\mathbf{s} = 0.$$

(13) (7.3.19)

(a) At points of S, we have

$$\frac{\partial f}{\partial n} = \nabla f \cdot \mathbf{n} = \left(\frac{2x}{a^2}, \frac{2y}{a^2}, \frac{2z}{a^2}\right) \cdot \left(\frac{x}{a}, \frac{y}{a}, \frac{z}{a}\right) = \frac{2(x^2 + y^2 + z^2)}{a^3} = \frac{2}{a},$$

SO

$$\iint_{S} \frac{\partial f}{\partial n} \, dS = \iint_{S} \frac{2}{a} \, dS = \frac{2}{a} \frac{1}{8} \, 4\pi a^2 = \pi a.$$

- (b) We have $\nabla \cdot (\nabla f) = \nabla \cdot (\frac{2x}{\rho^2}, \frac{2y}{\rho^2}, \frac{2z}{\rho^2}) = \dots = \frac{2}{\rho^2}$, so $\iiint_D \nabla \cdot (\nabla f) \, dV = 2 \iiint_D \frac{1}{\rho^2} \, dV = 2 \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \int_0^a \frac{1}{\rho^2} \, \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta = \pi a.$
- (c) The three flat quarter circles that are part of ∂D do not contribute anything to $\iint_S \nabla f \cdot \mathbf{n} \, dS$. For example, on the bottom quarter circle, $\nabla f(x, y, 0) = (\frac{2x}{\rho^2}, \frac{2y}{\rho^2}, 0)$ and the unit normal is $-\mathbf{k}$, so $\iint_{\text{bottom}} \nabla f \cdot (-\mathbf{k}) dS = 0$. The cases of the other two are similar.

WE HOPE YOU ENJOYED 18.022,

AND GOOD LUCK ON THE FINAL!!!

18.022 Calculus of Several Variables Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.