NINTH HOMEWORK

Feel free to work with others, but the final write-up should be entirely your own and based on your own understanding.

1. $(10 \mathrm{pts})(5.2 .13)$
2. $(10 \mathrm{pts})(5.2 .14)$
3. (10 pts) (5.3.4)
4. $(10 \mathrm{pts})(5.3 .13)$
5. $(10 \mathrm{pts})(5.4 .13)$
6. $(10 \mathrm{pts})(5.4 .14)$
7. $(10 \mathrm{pts})(5.4 .21)$
8. (10 pts) (5.5.3)
9. (10 pts) (5.5.4)
10. (10 pts) (5.5.9)
11. (10 pts) $(5.5 .11)$
12. (10 pts) (5.5.12)

Just for fun: Find a bounded region $D \subset \mathbb{R}^{2}$ of type 3, so that
$D=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, \gamma(x) \leq y \leq \delta(x)\right\}=\left\{(x, y) \in \mathbb{R}^{2} \mid c \leq y \leq d, \alpha(y) \leq x \leq \beta(y)\right\}$ and a function $f: D \longrightarrow \mathbb{R}$ such that

$$
\int_{a}^{b}\left(\int_{\gamma(x)}^{\delta(x)} f(x, y) \mathrm{d} y\right) \mathrm{d} x
$$

exists but

$$
\int_{c}^{d}\left(\int_{\alpha(y)}^{\beta(y)} f(x, y) \mathrm{d} x\right) \mathrm{d} y
$$

does not.
Is the function f integrable over D ?

MIT OpenCourseWare
http://ocw.mit.edu

18.022 Calculus of Several Variables

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

