EIGHTH HOMEWORK

Feel free to work with others, but the final write-up should be entirely your own and based on your own understanding.

1. $(10 \mathrm{pts})(4.2 .1)$
2. $(5 \mathrm{pts})(4.2 .6)$
3. $(5 \mathrm{pts})(4.2 .8)$
4. $(10 \mathrm{pts})(4.2 .22)$
5. $(10 \mathrm{pts})(4.2 .23)$
6. (5 pts) (4.2.33)
7. (5 pts) (4.2.46(b))
8. (20 pts) We will show in this problem that amongst all boxes with surface area a, the volume is a maximum if and only if the box is a cube. Let

$$
V: \mathbb{R}^{3} \longrightarrow \mathbb{R}
$$

be the function $V(x, y, z)=x y z$. Then we want to maximise V on the set A of all points where $x>0, y>0, z>0$ and $2(x y+y z+z x)=a$.
(i) Show that there is a unique point $P \in A$ where V has a constrained critical point.
Let $K \subset A$ be the subset of points (x, y, z) where

$$
x \geq \frac{\sqrt{a}}{3 \sqrt{6}} \quad y \geq \frac{\sqrt{a}}{3 \sqrt{6}} \quad \text { and } \quad z \geq \frac{\sqrt{a}}{3 \sqrt{6}} .
$$

(ii) Show that if $Q \in A-K$ (so that Q is in A but not K) then $V(Q)<V(P)$.
(iii) Show that K is compact.
(iv) Show that V has a maximum on K at P.
(v) Show that V has a maximum on A at P.
8. (10 pts) (4.3.2)
9. (10 pts) (4.3.8)
10. (10 pts) (4.3.18)

Just for fun: What is the value of the limit:

$$
\lim _{x \rightarrow 0} \frac{\sin (\tan x)-\tan (\sin x)}{\sin ^{-1}\left(\tan ^{-1}(x)\right)-\tan ^{-1}\left(\sin ^{-1}(x)\right)} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.022 Calculus of Several Variables

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

