SEVENTH HOMEWORK

Feel free to work with others, but the final write-up should be entirely your own and based on your own understanding.

1. (10 pts) Let $\vec{F}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the vector field defined by $\vec{F}(x, y)=$ $x \hat{\imath}+y \hat{\jmath}$.
(a) Show that \vec{F} is a gradient flow.
(b) Find the flow line that passes through $(a, b) \neq(0,0)$ at time $t=0$.
2. (10 pts) (3.3.2)
3. $(10 \mathrm{pts})(3.3 .21)$
4. (10 pts) (3.3.24)
5. (10 pts) (4.1.8)
6. (10 pts) (4.1.14)
7. (10 pts) (4.1.18)
8. (10 pts) (4.1.20)
9. (10 pts) (4.1.33)
10. (10 pts) (4.1.34)

Just for fun: What are the Taylor polynomials of the function

$$
f(x)=e^{-1 / x^{2}}
$$

at the origin? What does this say about the remainder?

MIT OpenCourseWare
http://ocw.mit.edu

18.022 Calculus of Several Variables

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

