18.02-Practice Final A - Spring 2006

Problem 1. Let $P=(0,1,0), Q=(2,1,3), R=(1,-1,2)$. Compute $\overrightarrow{P Q} \times \overrightarrow{P R}$ and find the equation of the plane through P, Q, and R, in the form $a x+b y+c z=d$.
Problem 2. Find the point of intersection of the line through $P_{1}=(-1,2,-1)$ and $P_{2}=$ $(1,4,0)$ with the plane $3 x-2 y+z=1$.
Is P_{2} on the same side of the plane as the origin $(0,0,0)$ or not?
Problem 3. Let $A=\left[\begin{array}{rrr}1 & 2 & 1 \\ -1 & 4 & c \\ 3 & c & 2\end{array}\right]$.
a) Find all values of c for which A is not invertible.
b) Let $c=1$, and find the two entries marked $*$ in $A^{-1}=\left[\begin{array}{lll}. & \cdot & . \\ . & \cdot & * \\ . & . & *\end{array}\right]$.

Problem 4. Consider the plane curve given by $x(t)=e^{t} \cos t, y(t)=e^{t} \sin t$.
a) Find the velocity vector, and show that the speed is equal to $\sqrt{2} e^{t}$.
b) Find the angle between the velocity vector and the position vector, and show that it is the same for every t.
Problem 5. Let $f(x, y)=x^{3}+x y^{2}-2 y$.
a) Find the gradient of f at $(1,2)$ and use an approximation formula to estimate the value of $f(1.1,1.9)$.
b) Use the chain rule to find the rate of change of $f, d f / d t$, along the parametric curve $x(t)=t^{3}, y(t)=2 t^{2}$, at the time $t=1$.

Problem 6. In the contour plot below: mark a point where $f=1, f_{x}<0$ and $f_{y}=0$, and draw the direction of the gradient vector at the point P.

Problem 7. Let $f(x, y)=x^{3}-x y+\frac{1}{2} y^{2}$.
a) Find all the critical points of f.
b) Determine the type of the critical point at the origin.
c) What are the maximum and the minimum of f in the region $x \geq 0$? (Justify your answer.)
Problem 8. a) Find the equation of the tangent plane to the surface $x^{3}+y z=1$ at $(-1,2,1)$.
b) Assume that x, y, z are constrained by the relation $x^{3}+y z=1$, and let f be a function of x, y, z whose gradient at $(-1,2,1)$ is $\langle a, b, c\rangle$. Find the value of $\left(\frac{\partial f}{\partial y}\right)_{z}$ at $(-1,2,1)$. Express your answer in terms of a, b, c.
Problem 9. Evaluate the integral $\int_{0}^{1} \int_{0}^{\sqrt{x}} \frac{2 x y}{1-y^{4}} d y d x$ by changing the order of integration.

Problem 10. Evaluate the work done by the vector field $\mathbf{F}=-y^{3} i+x^{3} j$ around the circle of radius a centered at the origin, oriented counterclockwise in two ways: directly, or by using Green's theorem.
Problem 11. Find the flux of $x \hat{\boldsymbol{\imath}}$ out of each side of the square of sidelength $2,-1 \leq x \leq 1$, $-1 \leq y \leq 1$. Explain why the total flux out of any square of sidelength 2 is the same regardless of its center and orientation.
Problem 12. Let $\mathbf{F}=\left(x^{2}-x y\right) \hat{\boldsymbol{\imath}}+2 y \hat{\boldsymbol{\jmath}}$, and let C be the ellipse $(2 x-y)^{2}+(5 x+y)^{2}=3$, oriented counterclockwise.
Use the normal form of Green's theorem to express the flux of \mathbf{F} through C as a double integral.
(Give the integrand and region of integration, but do not provide limits for an iterated integral.) Use a change of variables to evaluate the double integral you found.
Problem 13. Express the volume of the cylinder $0 \leq z \leq a, x^{2}+y^{2} \leq 1$ first as a triple integral in cylindrical coordinates and then as the sum of two triple integrals in spherical coordinates.
Problem 14. Let $\mathbf{F}=z^{2} \hat{\boldsymbol{\imath}}+(z \sin y) \hat{\boldsymbol{\jmath}}+(2 z+a x z+b \cos y) \hat{\boldsymbol{k}}$.
a) Find values of a and b such that \mathbf{F} is conservative.
b) For these values of a and b, find a potential function for \mathbf{F} using a systematic method.
c) Still using the same values of a and b you found in part (a), calculate $\int_{C} \mathbf{F} \cdot d \boldsymbol{r}$ where C is the portion of the curve $x=t^{3}, y=1-t^{2}, z=t$ for $-1 \leq t \leq 1$.
Problem 15. Calculate the flux of $\mathbf{F}=x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}+(1-2 z) \hat{\boldsymbol{k}}$ out of the solid bounded by the $x y$-plane and the paraboloid $z=4-x^{2}-y^{2}$ in two ways: directly, or using the divergence theorem.
Problem 16. Let $\mathbf{F}=\left(-6 y^{2}+6 y\right) \hat{\boldsymbol{\imath}}+\left(x^{2}-3 z^{2}\right) \hat{\boldsymbol{\jmath}}-x^{2} \hat{\boldsymbol{k}}$.
Calculate curl \mathbf{F} and use Stokes' theorem to show that the work done by \mathbf{F} along any simple closed curve contained in the plane $x+2 y+z=1$ is equal to zero.

