18.02 Practice Exam 4A

Problem 1.

Let R be the solid region defined by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq a^{2}, \quad x \geq 0, \quad y \geq 0
$$

(a) (15) Set up a triple integral in cylindrical coordinates which gives the volume of R. (Put in integrand and limits, but DO NOT EVALUATE.)
(b) (15) Find the formula in spherical coordinates which gives the average distance of points of R to the $x z$-plane.
(Put in integrand and limits, but DO NOT EVALUATE.)

Problem 2.

Let $\overrightarrow{\mathbf{F}}$ be the vector field $\left\langle a x z,-1-b z^{2}, x^{2}-2 y z+4\right\rangle$.
(a)(10) For what values of a and b will $\overrightarrow{\mathbf{F}}$ be a conservative field?
(b)(10) For these values of a and b find a potential function f for $\overrightarrow{\mathbf{F}}$.

Use a systematic method and show your work.

Problem 3.

Let $\overrightarrow{\mathbf{F}}=\langle x z, y z+x, x y\rangle$.
(a) (10) Find $\vec{\nabla} \times \overrightarrow{\mathbf{F}}$.
(b) (15) Let C be the simple closed curve (oriented counterclockwise when viewed from above) $x-y+2 z=10$ whose projection onto the $x y$-plane is the circle $(x-1)^{2}+y^{2}=1$.
By using Stokes' theorem, compute $\oint_{C} \overrightarrow{\mathbf{F}} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}$.

Problem 4.

(a) (20) Use the divergence theorem to compute the flux of $\overrightarrow{\mathbf{F}}=\left(1+y^{2}\right) \hat{\boldsymbol{\jmath}}$ out of the curved part of the half-cylinder bounded by $x^{2}+y^{2}=a^{2}(y \geq 0), z=0, z=b$, and $y=0$. Justify your answer.
(b) (5) Suppose that S is a closed surface that lies entirely in $y<0$.

Is the outward flux of $\overrightarrow{\mathbf{F}}=\left(1+y^{2}\right) \hat{\boldsymbol{\jmath}}$ through S positive, negative, or zero? Justify your answer.

