18.02 Practice Exam 4A

Problem 1.

Let R be the solid region defined by the inequalities

 $x^2 + y^2 + z^2 \le a^2$, $x \ge 0$, $y \ge 0$

- (a) (15) Set up a triple integral in **cylindrical** coordinates which gives the volume of R. (Put in integrand and limits, but DO NOT EVALUATE.)
- (b) (15) Find the formula in **spherical** coordinates which gives the average distance of points of R to the xz-plane.
 (Put in integrand and limits, but DO NOT EVALUATE)

(Put in integrand and limits, but DO NOT EVALUATE.)

Problem 2.

Let $\overrightarrow{\mathbf{F}}$ be the vector field $\langle axz, -1 - bz^2, x^2 - 2yz + 4 \rangle$.

- (a)(10) For what values of a and b will $\overrightarrow{\mathbf{F}}$ be a conservative field?
- (b)(10) For these values of a and b find a potential function f for \mathbf{F} . Use a systematic method and show your work.

Problem 3.

Let $\overrightarrow{\mathbf{F}} = \langle xz, yz + x, xy \rangle$.

- (a) (10) Find $\overrightarrow{\nabla} \times \overrightarrow{\mathbf{F}}$.
- (b) (15) Let C be the simple closed curve (oriented counterclockwise when viewed from above) x y + 2z = 10whose projection onto the xy-plane is the circle $(x - 1)^2 + y^2 = 1$. By using Stokes' theorem, compute $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$.

Problem 4.

- (a) (20) Use the divergence theorem to compute the flux of $\vec{\mathbf{F}} = (1 + y^2)\hat{\boldsymbol{j}}$ out of the curved part of the half-cylinder bounded by $x^2 + y^2 = a^2$ ($y \ge 0$), z = 0, z = b, and y = 0. Justify your answer.
- (b) (5) Suppose that S is a closed surface that lies entirely in y < 0. Is the **outward** flux of $\vec{\mathbf{F}} = (1 + y^2)\hat{\boldsymbol{j}}$ through S positive, negative, or zero? **Justify your answer.**