Problem 1. a) Draw a picture of the region of integration of $\int_0^1 \int_x^{2x} dy dx$

b) Exchange the order of integration to express the integral in part (a) in terms of integration in the order dxdy. Warning: your answer will have two pieces.

Problem 2. a) Find the mass M of the upper half of the annulus, $1 < x^2 + y^2 < 9 \ (y \ge 0)$ with density $\delta = \frac{y}{x^2 + y^2}$.

b) Express the x-coordinate of the center of mass, \bar{x} , as an iterated integral. (Write explicitly the integrand and limits of integration.) Without evaluating the integral, explain why $\bar{x} = 0$.

Problem 3. a) Show that $\mathbf{F} = (3x^2 - 6y^2)\hat{i} + (-12xy + 4y)\hat{j}$ is conservative.

b) Find a potential function for **F**.

c) Let C be the curve
$$x = 1 + y^3(1-y)^3$$
, $0 \le y \le 1$. Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

Problem 4. a) Express the work done by the force field $\mathbf{F} = (5x + 3y)\hat{i} + (1 + \cos y)\hat{j}$ on a particle moving counterclockwise once around the unit circle centered at the origin in the form $\int_{a}^{b} f(t)dt$. (Do not evaluate the integral; don't even simplify f(t).)

b) Evaluate the line integral using Green's theorem.

Problem 5. Consider the rectangle R with vertices (0,0), (1,0), (1,4) and (0,4). The boundary of R is the curve C, consisting of C_1 , the segment from (0,0) to (1,0), C_2 , the segment from (1,0) to (1,4), C_3 the segment from (1,4) to (0,4) and C_4 the segment from (0,4) to (0,0). Consider the vector field

$$\mathbf{F} = (\cos x \sin y)\hat{\mathbf{i}} + (xy + \sin x \cos y)\hat{\mathbf{j}}$$

a) Find the work of \mathbf{F} along the boundary C oriented in a counterclockwise direction.

b) Is the total work along C_1 , C_2 and C_3 , more than, less than or equal to the work along C?

Problem 6. Find the volume of the region enclosed by the plane z = 4 and the surface

$$z = (2x - y)^{2} + (x + y - 1)^{2}.$$

Suggestion: change of variables.

18.02 Practice Exam 3B — Solutions

1. a)
$$y = 2x \qquad (1,2) \\ x = 1 \\ (1,1) \qquad b) \int_0^1 \int_{y/2}^y dx dy + \int_1^2 \int_{y/2}^1 dx dy.$$

2. a)
$$\delta dA = \frac{r \sin \theta}{r^2} r dr d\theta = \sin \theta dr d\theta.$$

$$M = \int \int_R \delta dA = \int_0^\pi \int_1^3 \sin \theta \, dr d\theta = \int_0^\pi 2 \sin \theta d\theta = \left[-2 \cos \theta \right]_0^\pi = 4.$$
b) $\bar{x} = \frac{1}{M} \int \int_R x \delta dA = \frac{1}{4} \int_0^\pi \int_1^3 r \cos \theta \sin \theta dr d\theta$

The reason why one knows that $\bar{x} = 0$ without computation is that x is odd with respect to the y-axis whereas the region **and the density** are symmetric with respect to the y-axis: $(x, y) \to (-x, y)$ preserves the half annulus and $\delta(x, y) = \delta(-x, y)$.

3. a) $N_x = -12y = M_y$, hence **F** is conservative.

b) $f_x = 3x^2 - 6y^2 \Rightarrow f = x^3 - 6y^2x + c(y) \Rightarrow f_y = -12xy + c'(y) = -12xy + 4y$. So c'(y) = 4y, thus $c(y) = 2y^2$ (+ constant). In conclusion $f = x^3 - 6xy^2 + 2y^2$ (+ constant).

c) The curve C starts at (1,0) and ends at (1,1), therefore

$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(1,1) - f(1,0) = (1-6+2) - 1 = -4.$$

4. a) The parametrization of the circle C is $x = \cos t$, $y = \sin t$, for $0 \le t < 2\pi$; then $dx = -\sin t dt$, $dy = \cos t dt$ and

$$W = \int_0^{2\pi} (5\cos t + 3\sin t)(-\sin t)dt + (1 + \cos(\sin t))\cos tdt.$$

b) Let R be the unit disc inside C;

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int \int_R (N_x - M_y) dA = \int \int_R (0 - 3) dA = -3 \operatorname{area}(R) = -3\pi.$$

5. a)
$$\begin{array}{c} (0,4) & \underbrace{\int_{C}^{C_{3}} (1,4)}_{C_{4}} & \underbrace{\int_{C} \mathbf{F} \cdot d\mathbf{r}}_{C_{2}} = \int \int_{R} (N_{x} - M_{y}) dx dy \\ (0,0) & \underbrace{\int_{C_{1}}^{C_{2}} (1,0)}_{C_{1}} & \underbrace{\int_{C_{1}}^{C_{2}} (1,0)}_{C_{1}} & \underbrace{\int_{0}^{4} \int_{0}^{1} y dx dy}_{C_{2}} = \int_{0}^{4} \int_{0}^{1} y dx dy = \int_{0}^{4} y dy = [y^{2}/2]_{0}^{4} = 8. \end{array}$$

b) On C_4 , $\mathbf{F} = \sin y \mathbf{i}$, whereas $d\mathbf{r}$ is parallel to \mathbf{j} . Hence $\mathbf{F} \cdot d\mathbf{r} = 0$. Therefore the work of \mathbf{F} along C_4 equals 0. Thus

$$\int_{C_1+C_2+C_3} \mathbf{F} \cdot d\mathbf{r} = \oint_C \mathbf{F} \cdot d\mathbf{r} - \int_{C_4} \mathbf{F} \cdot d\mathbf{r} = \oint_C \mathbf{F} \cdot d\mathbf{r} ;$$

and the total work along $C_1 + C_2 + C_3$ is equal to the work along C.

6. Let u = 2x - y and v = x + y - 1. The Jacobian $\begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = 3$. Hence dudv = 3dxdy and $dxdy = \frac{1}{3}dudv$, so that

$$V = \int \int_{(2x-y)^2 + (x+y-1)^2 < 4} 4 - (2x-y)^2 - (x+y-1)^2 \, dx \, dy$$

=
$$\int \int_{u^2 + v^2 < 4} (4 - u^2 - v^2) \frac{1}{3} \, du \, dv$$

=
$$\int_0^{2\pi} \int_0^2 (4 - r^2) \frac{1}{3} r \, dr \, d\theta = \int_0^{2\pi} \left[\frac{2}{3} r^2 - \frac{1}{12} r^4 \right]_0^2$$

=
$$\int_0^{2\pi} \frac{4}{3} \, d\theta = \frac{8\pi}{3}.$$