18.02 Practice Exam 3B

Problem 1. a) Draw a picture of the region of integration of $\int_{0}^{1} \int_{x}^{2 x} d y d x$
b) Exchange the order of integration to express the integral in part (a) in terms of integration in the order $d x d y$. Warning: your answer will have two pieces.

Problem 2. a) Find the mass M of the upper half of the annulus, $1<x^{2}+y^{2}<9(y \geq 0)$ with density $\delta=\frac{y}{x^{2}+y^{2}}$.
b) Express the x-coordinate of the center of mass, \bar{x}, as an iterated integral. (Write explicitly the integrand and limits of integration.) Without evaluating the integral, explain why $\bar{x}=0$.

Problem 3. a) Show that $\mathbf{F}=\left(3 x^{2}-6 y^{2}\right) \hat{\boldsymbol{i}}+(-12 x y+4 y) \hat{\boldsymbol{j}}$ is conservative.
b) Find a potential function for \mathbf{F}.
c) Let C be the curve $x=1+y^{3}(1-y)^{3}, 0 \leq y \leq 1$. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

Problem 4. a) Express the work done by the force field $\mathbf{F}=(5 x+3 y) \hat{\boldsymbol{i}}+(1+\cos y) \hat{\boldsymbol{j}}$ on a particle moving counterclockwise once around the unit circle centered at the origin in the form $\int_{a}^{b} f(t) d t$. (Do not evaluate the integral; don't even simplify $f(t)$.)
b) Evaluate the line integral using Green's theorem.

Problem 5. Consider the rectangle R with vertices $(0,0),(1,0),(1,4)$ and $(0,4)$. The boundary of R is the curve C, consisting of C_{1}, the segment from $(0,0)$ to $(1,0), C_{2}$, the segment from $(1,0)$ to $(1,4), C_{3}$ the segment from $(1,4)$ to $(0,4)$ and C_{4} the segment from $(0,4)$ to $(0,0)$. Consider the vector field

$$
\mathbf{F}=(\cos x \sin y) \hat{\boldsymbol{i}}+(x y+\sin x \cos y) \hat{\boldsymbol{j}}
$$

a) Find the work of \mathbf{F} along the boundary C oriented in a counterclockwise direction.
b) Is the total work along C_{1}, C_{2} and C_{3}, more than, less than or equal to the work along C ?

Problem 6. Find the volume of the region enclosed by the plane $z=4$ and the surface

$$
z=(2 x-y)^{2}+(x+y-1)^{2}
$$

Suggestion: change of variables.

18.02 Practice Exam 3B - Solutions

1. a)

$$
\text { b) } \int_{0}^{1} \int_{y / 2}^{y} d x d y+\int_{1}^{2} \int_{y / 2}^{1} d x d y
$$

2. a) $\delta d A=\frac{r \sin \theta}{r^{2}} r d r d \theta=\sin \theta d r d \theta$.

$$
M=\iint_{R} \delta d A=\int_{0}^{\pi} \int_{1}^{3} \sin \theta d r d \theta=\int_{0}^{\pi} 2 \sin \theta d \theta=[-2 \cos \theta]_{0}^{\pi}=4
$$

b) $\bar{x}=\frac{1}{M} \iint_{R} x \delta d A=\frac{1}{4} \int_{0}^{\pi} \int_{1}^{3} r \cos \theta \sin \theta d r d \theta$

The reason why one knows that $\bar{x}=0$ without computation is that x is odd with respect to the y-axis whereas the region and the density are symmetric with respect to the y-axis: $(x, y) \rightarrow(-x, y)$ preserves the half annulus and $\delta(x, y)=\delta(-x, y)$.
3. a) $N_{x}=-12 y=M_{y}$, hence \mathbf{F} is conservative.
b) $f_{x}=3 x^{2}-6 y^{2} \Rightarrow f=x^{3}-6 y^{2} x+c(y) \Rightarrow f_{y}=-12 x y+c^{\prime}(y)=-12 x y+4 y$. So $c^{\prime}(y)=4 y$, thus $c(y)=2 y^{2} \quad(+$ constant $)$. In conclusion

$$
f=x^{3}-6 x y^{2}+2 y^{2} \quad(+ \text { constant })
$$

c) The curve C starts at $(1,0)$ and ends at $(1,1)$, therefore

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(1,1)-f(1,0)=(1-6+2)-1=-4
$$

4. a) The parametrization of the circle C is $x=\cos t, y=\sin t$, for $0 \leq t<2 \pi$; then $d x=-\sin t d t, d y=\cos t d t$ and

$$
W=\int_{0}^{2 \pi}(5 \cos t+3 \sin t)(-\sin t) d t+(1+\cos (\sin t)) \cos t d t
$$

b) Let R be the unit disc inside C;

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}\left(N_{x}-M_{y}\right) d A=\iint_{R}(0-3) d A=-3 \operatorname{area}(R)=-3 \pi .
$$

b) On $C_{4}, \mathbf{F}=\sin y \mathbf{i}$, whereas $d \mathbf{r}$ is parallel to \mathbf{j}. Hence $\mathbf{F} \cdot d \mathbf{r}=0$. Therefore the work of \mathbf{F} along C_{4} equals 0 . Thus

$$
\int_{C_{1}+C_{2}+C_{3}} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} \mathbf{F} \cdot d \mathbf{r}-\int_{C_{4}} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} \mathbf{F} \cdot d \mathbf{r} ;
$$

and the total work along $C_{1}+C_{2}+C_{3}$ is equal to the work along C.
6. Let $u=2 x-y$ and $v=x+y-1$. The Jacobian $\left|\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right|=\left|\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right|=3$.

Hence $d u d v=3 d x d y$ and $d x d y=\frac{1}{3} d u d v$, so that

$$
\begin{aligned}
V & =\iint_{(2 x-y)^{2}+(x+y-1)^{2}<4} 4-(2 x-y)^{2}-(x+y-1)^{2} d x d y \\
& =\iint_{u^{2}+v^{2}<4}\left(4-u^{2}-v^{2}\right) \frac{1}{3} d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right) \frac{1}{3} r d r d \theta=\int_{0}^{2 \pi}\left[\frac{2}{3} r^{2}-\frac{1}{12} r^{4}\right]_{0}^{2} \\
& =\int_{0}^{2 \pi} \frac{4}{3} d \theta=\frac{8 \pi}{3}
\end{aligned}
$$

