Problem 1. a) Draw a picture of the region of integration of $\int_0^1 \int_x^{2x} dy dx$

b) Exchange the order of integration to express the integral in part (a) in terms of integration in the order dxdy. Warning: your answer will have two pieces.

Problem 2. a) Find the mass M of the upper half of the annulus, $1 < x^2 + y^2 < 9 \ (y \ge 0)$ with density $\delta = \frac{y}{x^2 + y^2}$.

b) Express the x-coordinate of the center of mass, \bar{x} , as an iterated integral. (Write explicitly the integrand and limits of integration.) Without evaluating the integral, explain why $\bar{x} = 0$.

Problem 3. a) Show that $\mathbf{F} = (3x^2 - 6y^2)\hat{i} + (-12xy + 4y)\hat{j}$ is conservative.

- b) Find a potential function for \mathbf{F} .
- c) Let C be the curve $x = 1 + y^3(1 y)^3$, $0 \le y \le 1$. Calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

Problem 4. a) Express the work done by the force field $\mathbf{F} = (5x + 3y)\hat{i} + (1 + \cos y)\hat{j}$ on a particle moving counterclockwise once around the unit circle centered at the origin in the form $\int_a^b f(t)dt$. (**Do not evaluate the integral; don't even simplify** f(t).)

b) Evaluate the line integral using Green's theorem.

Problem 5. Consider the rectangle R with vertices (0,0), (1,0), (1,4) and (0,4). The boundary of R is the curve C, consisting of C_1 , the segment from (0,0) to (1,0), C_2 , the segment from (1,0) to (1,4), C_3 the segment from (1,4) to (0,4) and C_4 the segment from (0,4) to (0,0). Consider the vector field

$$\mathbf{F} = (\cos x \sin y)\hat{\mathbf{i}} + (xy + \sin x \cos y)\hat{\mathbf{j}}$$

- a) Find the work of \mathbf{F} along the boundary C oriented in a counterclockwise direction.
- b) Is the total work along C_1 , C_2 and C_3 , more than, less than or equal to the work along C?

Problem 6. Find the volume of the region enclosed by the plane z = 4 and the surface $z = (2x - y)^2 + (x + y - 1)^2$.

Suggestion: change of variables.