18.02 Practice Exam 3B

Problem 1. a) Draw a picture of the region of integration of $\int_{0}^{1} \int_{x}^{2 x} d y d x$
b) Exchange the order of integration to express the integral in part (a) in terms of integration in the order $d x d y$. Warning: your answer will have two pieces.

Problem 2. a) Find the mass M of the upper half of the annulus, $1<x^{2}+y^{2}<9(y \geq 0)$ with density $\delta=\frac{y}{x^{2}+y^{2}}$.
b) Express the x-coordinate of the center of mass, \bar{x}, as an iterated integral. (Write explicitly the integrand and limits of integration.) Without evaluating the integral, explain why $\bar{x}=0$.

Problem 3. a) Show that $\mathbf{F}=\left(3 x^{2}-6 y^{2}\right) \hat{\boldsymbol{i}}+(-12 x y+4 y) \hat{\boldsymbol{j}}$ is conservative.
b) Find a potential function for \mathbf{F}.
c) Let C be the curve $x=1+y^{3}(1-y)^{3}, 0 \leq y \leq 1$. Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

Problem 4. a) Express the work done by the force field $\mathbf{F}=(5 x+3 y) \hat{\boldsymbol{i}}+(1+\cos y) \hat{\boldsymbol{j}}$ on a particle moving counterclockwise once around the unit circle centered at the origin in the form $\int_{a}^{b} f(t) d t$. (Do not evaluate the integral; don't even simplify $f(t)$.)
b) Evaluate the line integral using Green's theorem.

Problem 5. Consider the rectangle R with vertices $(0,0),(1,0),(1,4)$ and $(0,4)$. The boundary of R is the curve C, consisting of C_{1}, the segment from $(0,0)$ to $(1,0), C_{2}$, the segment from $(1,0)$ to $(1,4), C_{3}$ the segment from $(1,4)$ to $(0,4)$ and C_{4} the segment from $(0,4)$ to $(0,0)$. Consider the vector field

$$
\mathbf{F}=(\cos x \sin y) \hat{\boldsymbol{i}}+(x y+\sin x \cos y) \hat{\boldsymbol{j}}
$$

a) Find the work of \mathbf{F} along the boundary C oriented in a counterclockwise direction.
b) Is the total work along C_{1}, C_{2} and C_{3}, more than, less than or equal to the work along C ?

Problem 6. Find the volume of the region enclosed by the plane $z=4$ and the surface

$$
z=(2 x-y)^{2}+(x+y-1)^{2}
$$

Suggestion: change of variables.

