18.02: Practice Exam 3A

1. Let (\bar{x}, \bar{y}) be the center of mass of the triangle, with vertices at $(-2,0)$, $(0,1),(2,0)$ and uniform density $\delta=1$.
a) Write an integral formula for \bar{y}. Do not evaluate the integral(s), but write explicitly the integrand and limits of integration.
b) Find \bar{x}.
2. Find the polar moment of inertia of the unit disk with density equal to the distance from the y-axis.
3. Let $\mathbf{F}=\left(a x^{2} y+y^{3}+1\right) \mathbf{i}+\left(2 x^{3}+b x y^{2}+2\right) \mathbf{j}$ be a vector field, where a and b are constants.
a) Find the values of a and b for which \mathbf{F} is conservative.
b) For these values of a and b, find $f(x, y)$ such that $\mathbf{F}=\nabla f$.
c) Still using the values of a and b from part (a), compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ along the curve C such that $x=e^{t} \cos t, y=e^{t} \sin t, 0 \leq t \leq \pi$.
4. For $\mathbf{F}=y x^{3} \mathbf{i}+y^{2} \mathbf{j}$ find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ on the portion of the curve $y=x^{2}$ from $(0,0)$ to $(1,1)$.
5. Consider the region R in the first quadrant bounded by the curves $y=x^{2}$, $y=x^{2} / 5, x y=2$, and $x y=4$.
a) Compute $d x d y$ in terms of $d u d v$ if $u=x^{2} / y$ and $v=x y$.
b) Find a double integral for the area of R in $u v$ coordinates and evaluate it.
6. a) Let C be a simple closed curve going counterclockwise around a region R. Let $M=M(x, y)$. Express $\oint_{C} M d x$ as a double integral over R.
b) Find M so that $\oint_{C} M d x$ is the mass of R with density $\delta(x, y)=(x+y)^{2}$.
7. Consider the region R enclosed by the x-axis, $x=1$ and $y=x^{3}$.

Travelling in a counterclockwise direction along the boundary C or R, call C_{1} the portion of C that goes from $(0,0)$ to $(0,1), C_{2}$ the portion that goes from $(1,0)$ to $(1,1)$ and C_{3} the portion that goes from $(1,1)$ to $(0,0)$.
a) Find the total work of $\mathbf{F}=\left(1+y^{2}\right) \mathbf{i}$ around the boundary C of R, in a counterclockwise direction.
b) Calculate the work of \mathbf{F} along C_{1} and C_{2}.
c) Use parts (a) and (b) to find the work along the third side C_{3}.

18.02 Practice Exam 3A Solutions

1. a) Area of triangle is base times height $=2$, so $\bar{y}=\frac{1}{2} \int_{0}^{1} \int_{2 y-2}^{2-2 y} y d x d y$
b) By symmetry $\bar{x}=0$
2. $\delta=|x|=r|\cos \theta| . I_{0}=\iint_{D} r^{2} \delta r d r d \theta=$

$$
\int_{0}^{2 \pi} \int_{0}^{1} r^{2}|r \cos \theta| r d r d \theta=4 \int_{0}^{\pi / 2} \int_{0}^{1} r^{4} \cos \theta d r d \theta=4 \int_{0}^{\pi / 2} \frac{1}{5} \cos \theta d \theta=\frac{4}{5}
$$

3. a) $N_{x}=6 x^{2}+b y^{2}, M_{y}=a x^{2}+3 y^{2}$. $N_{x}=M_{y}$ provided $a=6$ and $b=3$.
b) $f_{x}=6 x^{2} y+y^{3}+1 \Longrightarrow f=2 x^{3} y+x y^{3}+x+c(y)$. Therefore, $f_{y}=2 x^{3}+3 x y^{2}+c^{\prime}(y)$. Setting this equal to N, we have $2 x^{3}+3 x y^{2}+c^{\prime}(y)=$ $2 x^{3}+3 x y^{2}+2$ so $c^{\prime}(y)=2$ and $c=2 y$ (+constant). In all,

$$
f=2 x^{3} y+x y^{3}+x+2 y \quad(+ \text { constant })
$$

c) C starts at $(1,0)$ and ends at $\left(-e^{\pi}, 0\right)$, so $\int_{C} \mathbf{F} \cdot d \mathbf{r}=f\left(-e^{\pi}, 0\right)-f(1,0)=$ $-e^{\pi}-1$.
4. $\int_{C} y x^{3} d x+y^{2} d y=\int_{0}^{1} x^{2} x^{3} d x+\left(x^{2}\right)^{2}(2 x d x)=\int_{0}^{1} 3 x^{5} d x=1 / 2$
5. a) $\left|\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right|=\left|\begin{array}{cc}2 x / y & -x^{2} / y^{2} \\ y & x\end{array}\right|=3 x^{2} / y$. Therefore,

$$
d u d v=\left(3 x^{2} / y\right) d x d y=3 u d x d y \quad \Longrightarrow \quad d x d y=\frac{1}{3 u} d u d v
$$

b) $\int_{2}^{4} \int_{1}^{5} \frac{1}{3 u} d u d v=\int_{2}^{4} \frac{1}{3} \ln 5 d v=\frac{2}{3} \ln 5$
6. a) $\oint_{C} M d x=\iint_{R}-M_{y} d A$
b) We want M such that $-M_{y}=(x+y)^{2}$. Use $M=-\frac{1}{3}(x+y)^{3}$
7. a) For $\mathbf{F}, M_{y}=2 y$ and $N_{x}=0$, hence $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R}-2 y d A=$ $\int_{0}^{1} \int_{0}^{x^{3}}-2 y d y d x=\int_{0}^{1}-x^{6} d x=-\frac{1}{7}$.
b) For the work through C_{1}, we have $\mathbf{F} \cdot \mathbf{i}=1+y^{2}=1+0=1$. The length of C_{1} is 1 , so the total work through C_{1} is 1 .
The work through C_{2} is zero because $\mathbf{F} \cdot \mathbf{j}=0$.
c) $\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \mathbf{F} \cdot d \mathbf{r}-\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}-\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=-\frac{1}{7}-1-0=-\frac{8}{7}$

