18.02 Practice Exam 2B – Solutions

Problem 1.

a) $f(x,y) = x(y-x^2)$ is zero on the y-axis (x = 0) and on the parabola $y = x^2$.

b) saddle point.

- c) $\nabla f = (y 3x^2)\hat{\mathbf{i}} + x\hat{\mathbf{j}}; \text{ at } P, \nabla f = \langle -2, 1 \rangle.$
- d) $\Delta w \simeq -2 \Delta x + \Delta y$.

Problem 2.

a) By measuring,
$$\Delta h = 100$$
 for $\Delta s \simeq 500$, so $\left(\frac{dh}{ds}\right)_{\hat{u}} \simeq .2$.
b) Q is the northernmost point on the curve $h = 2200$; $\frac{\partial h}{\partial y} \simeq \frac{\Delta h}{\Delta y} \simeq \frac{-100}{1000/3} \simeq -.3$

Problem 3.

 $f(x, y, z) = x^3y + z^2 = 3$: the normal vector is $\nabla f = \langle 3x^2y, x^3, 2z \rangle = \langle 3, -1, 4 \rangle$. The tangent plane is 3x - y + 4z = 4.

Problem 4.

a) The volume is $xyz = xy(1-x^2-y^2) = xy-x^3y-xy^3$. Critical points: $f_x = y-3x^2y-y^3 = 0$, $f_y = x - x^3 - 3xy^2 = 0$.

b) Assuming x > 0 and y > 0, the equations can be rewritten as $1-3x^2-y^2 = 0$, $1-x^2-3y^2 = 0$. Solution: $x^2 = y^2 = 1/4$, i.e. (x, y) = (1/2, 1/2).

c) $f_{xx} = -6xy = -3/2$, $f_{yy} = -6xy = -3/2$, $f_{xy} = 1 - 3x^2 - 3y^2 = -1/2$. So $f_{xx}f_{yy} - f_{xy}^2 > 0$, and $f_{xx} < 0$, it is a maximum.

d) f(x, y, z) = xyz, $g(x, y, z) = x^2 + y^2 + z = 1$: must have $\nabla f = \lambda \nabla g$, i.e. $yz = 2\lambda x$, $xz = 2\lambda y$, $xy = \lambda$.

Problem 5.

$$\frac{\partial w}{\partial x} = f_u u_x + f_v v_x = y f_u + \frac{1}{y} f_v. \quad \frac{\partial w}{\partial y} = f_u u_y + f_v v_y = x f_u - \frac{x}{y^2} f_v$$

Problem 6.

Chain rule: $\left(\frac{\partial w}{\partial z}\right)_y = \frac{\partial w}{\partial x} \left(\frac{\partial x}{\partial z}\right)_y = 3x^2 y \left(\frac{\partial x}{\partial z}\right)_y$. To find $\left(\frac{\partial x}{\partial z}\right)_y$, differentiate the relation $x^2 y + xz^2 = 5$ w.r.t. z holding y constant: $(2xy + z^2) \left(\frac{\partial x}{\partial z}\right)_y + 2xz = 0$, so $\left(\frac{\partial x}{\partial z}\right)_y = \frac{-2xz}{2xy + z^2}$. Therefore $\left(\frac{\partial w}{\partial z}\right)_y = \frac{-6x^3yz}{2xy + z^2}$. At (x, y, z) = (1, 1, 2) this is equal to -2.

