### 18.02 Practice Exam 2A

Problem 1. Let $f(x, y)=x^{2} y^{2}-x$.
a) (5) Find $\nabla f$ at $(2,1)$
b) (5) Write the equation for the tangent plane to the graph of $f$ at $(2,1,2)$.
c) (5) Use a linear approximation to find the approximate value of $f(1.9,1.1)$.
d) (5) Find the directional derivative of $f$ at $(2,1)$ in the direction $-\hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}$.

Problem 2. (10) On the contour plot below, mark the portion of the level curve $f=2000$ on which $\frac{\partial f}{\partial y} \geq 0$.


Problem 3. a) (10) Find the critical points of

$$
w=-3 x^{2}-4 x y-y^{2}-12 y+16 x
$$

and say what type each critical point is.
b) (10) Find the point of the first quadrant $x \geq 0, y \geq 0$ at which $w$ is largest. Justify your answer.

Problem 4. Let $u=y / x, v=x^{2}+y^{2}, w=w(u, v)$.
a) (10) Express the partial derivatives $w_{x}$ and $w_{y}$ in terms of $w_{u}$ and $w_{v}$ (and $x$ and $y$ ).
b) (7) Express $x w_{x}+y w_{y}$ in terms of $w_{u}$ and $w_{v}$. Write the coefficients as functions of $u$ and $v$.
c) (3) Find $x w_{x}+y w_{y}$ in case $w=v^{5}$.

Problem 5. a) (10) Find the Lagrange multiplier equations for the point of the surface

$$
x^{4}+y^{4}+z^{4}+x y+y z+z x=6
$$

at which $x$ is largest. (Do not solve.)
b) (5) Given that $x$ is largest at the point $\left(x_{0}, y_{0}, z_{0}\right)$, find the equation for the tangent plane to the surface at that point.

Problem 6. Suppose that $x^{2}+y^{3}-z^{4}=1$ and $z^{3}+z x+x y=3$.
a) (8) Take the total differential of each of these equations.
b) (7) The two surfaces in part (a) intersect in a curve along which $y$ is a function of $x$. Find $d y / d x$ at $(x, y, z)=(1,1,1)$.

