Improper Integrals of the Second Kind, Continued

We'll continue our discussion of integrals of functions which have singularities at finite values; for example, $f(x)=\frac{1}{x}$. If $f(x)$ has a singularity at 0 we define

$$
\int_{0}^{1} f(x) d x=\lim _{a \rightarrow 0^{+}} \int_{a}^{1} f(x) d x
$$

As before, we say the integral converges if this limit exists and diverges if not.

Figure 1: Area under the graph of $y=\frac{1}{x}$.
We treat this infinite vertical "tail" the same way we treated horizontal tails. Figure 1 shows a function whose value goes to positive infinity as x goes to zero from the right hand side. We don't know whether the area under its graph between 0 and 1 is going to be infinite or finite, so we cut it off at some point a where we know it will be finite. Then we let a go to zero from above $\left(a \rightarrow 0^{+}\right)$ and see whether the area under the curve between a and 1 goes to infinity or to some finite limit.

Example: $\int_{0}^{1} \frac{d x}{\sqrt{x}}$

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{\sqrt{x}} & =\int_{0}^{1} x^{-1 / 2} d x \\
& =\left.\frac{1}{1 / 2} x^{1 / 2}\right|_{0} ^{1} \\
& =\left.2 x^{1 / 2}\right|_{0} ^{1}
\end{aligned}
$$

$$
\begin{aligned}
& =2 \cdot 1^{1 / 2}-2 \cdot 0^{1 / 2} \\
& =2 .
\end{aligned}
$$

This is a convergent integral.
Example: $\int_{0}^{1} \frac{d x}{x}$

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{x} & =\left.\ln x\right|_{0} ^{1} \\
& =\ln 1-\ln 0^{+} \\
& =0-(-\infty) \\
& =+\infty
\end{aligned}
$$

This integral diverges.
In general:

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{x^{p}} & =\left.\frac{x^{-p+1}}{-p+1}\right|_{0} ^{1} \quad(\text { for } p \neq 1) \\
& =\frac{1^{-p+1}}{-p+1}-\frac{0^{-p+1}}{-p+1} \\
& = \begin{cases}\frac{1}{1-p} & \text { if } p<1 \\
\text { diverges } & \text { if } p \geq 1\end{cases}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

