Indefinite Integrals over Singularities

When computing $\int_{0}^{\infty} \frac{d x}{\sqrt{x^{2}+10}}$ we had to take an extra step to avoid the integral $\int_{0}^{1} \frac{d x}{x}$. We'll now go back and discuss integration near singular points.

Integrals like $\int_{0}^{1} \frac{d x}{x}$ are known as indefinite integrals of the second type. Examples include:

$$
\int_{0}^{1} \frac{d x}{\sqrt{x}}, \quad \int_{0}^{1} \frac{d x}{x}, \quad \text { and } \quad \int_{0}^{1} \frac{d x}{x^{2}}
$$

These integrals turn out to be fairly straightforward to calculate:

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{\sqrt{x}} & =\int_{0}^{1} x^{-1 / 2} d x \\
& =\left.\frac{1}{1 / 2} x^{1 / 2}\right|_{0} ^{1} \\
& =\left.2 x^{1 / 2}\right|_{0} ^{1} \\
& =2 \cdot 1^{1 / 2}-2 \cdot 0^{1 / 2} \\
& =2 . \\
\int_{0}^{1} \frac{d x}{x} & =\left.\ln x\right|_{0} ^{1} \\
& =\ln 1-\ln 0 \quad \text { (diverges.) } \\
& =-\left.x^{-1}\right|_{0} ^{1} \\
\int_{0}^{1} \frac{d x}{x^{2}}= & -\left(-\frac{1}{0}\right) \quad \text { (diverges.) }
\end{aligned}
$$

However, you can get into trouble if you're not careful. Consider the following calculation:

$$
\begin{aligned}
\int_{-1}^{1} \frac{d x}{x^{2}} & =-\left.x^{-1}\right|_{-1} ^{1} \\
& =-\left(1^{-1}\right)-\left(-(-1)^{-1}\right) \\
& =-1-1 \\
& =-2
\end{aligned}
$$

This is ridiculous! As we see from Figure $1, \frac{1}{x^{2}}$ is always positive. The area under the graph of $y=\frac{1}{x^{2}}$ between -1 and 1 is clearly greater than 2 ; in particular it cannot be a negative number.

In fact, the area under the graph of $y=\frac{1}{x^{2}}$ between -1 and 1 is infinite, not -2 . The calculation above is nonsense.

Figure 1: Graph of $y=\frac{1}{x^{2}}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

