Example: $\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}}$
If we apply l'Hôpital's rule to this problem we get:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\cos x}{2 x} \\
&=\text { lim }^{\prime} \text { Hop) } \\
&=0 . \\
&=0 . \sin x \\
& \text { (l'Hop) }
\end{aligned}
$$

If we instead apply the linear approximation method and plug in $\sin x \approx x$, we get:

$$
\begin{aligned}
\frac{\sin x}{x^{2}} & \approx \frac{x}{x^{2}} \\
& \approx \frac{1}{x} .
\end{aligned}
$$

We then conclude that:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\sin x}{x^{2}} & =\infty \\
\lim _{x \rightarrow 0^{-}} \frac{\sin x}{x^{2}} & =-\infty
\end{aligned}
$$

There's something fishy going on here. What's wrong?
Student: L'Hôpital's rule wasn't applied correctly the second time.
That's correct; $\lim _{x \rightarrow 0} \frac{\cos x}{2 x}$ is of the form $\frac{1}{0}$, not $\frac{0}{0}$ or some other indeterminate form.

This is where you have to be careful when using l'Hôpital's rule. You have to verify that you have an indeterminate form like $\frac{0}{0}$ or $\frac{\infty}{\infty}$ before applying the rule. The moral of the story is: Look before you l'Hôp.

Also, don't use l'Hospital's rule as a crutch. If we want to evaluate:

$$
\lim _{x \rightarrow \infty} \frac{x^{5}-2 x^{4}+1}{x^{4}+2}
$$

we can apply l'Hôpital's rule four times, or we could divide the numerator and denominator by x^{5} to conclude:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{5}-2 x^{4}+1}{x^{4}+2} & =\lim _{x \rightarrow \infty} \frac{1-2 / x+1 / x^{5}}{1 / x+2 / x^{5}} \\
& =\frac{1}{0} \\
& =\infty
\end{aligned}
$$

After enough practice with rates of growth, we can calculate this limit almost instantly:

$$
\lim _{x \rightarrow \infty} \frac{x^{5}-2 x^{4}+1}{x^{4}+2} \sim \lim _{x \rightarrow \infty} \frac{x^{5}}{x^{4}}=\infty .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

