The Indeterminate Form 0^{0}

We next consider the limit:

$$
\lim _{x \rightarrow 0^{+}} x^{x} .
$$

Can we compute this?
There are many different indeterminate forms; x^{x} is one of the simpler examples. In this case, because x is a moving exponent, we can use a trick to evaluate the limit.

Since we have a moving exponent, we will use base e. We rewrite our original expression as follows:

$$
x^{x}=e^{x \ln x} .
$$

Now we can focus our attention on the exponent:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln x & =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{1 / 2}{-1 /} \\
& =\lim _{x \rightarrow 0^{+}}-x \\
& =0
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}} \quad \text { (l'Hop) }
$$

Therefore,

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x^{x} & =\lim _{x \rightarrow 0^{+}} e^{x \ln x} \\
& =e^{0} \\
& =1
\end{aligned}
$$

This was relatively easy to calculate because we have so many powerful tools to work with.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

