Comparing Growth of $\ln (x)$ and $x^{\frac{1}{3}}$

We have one more item on our original list of limits to cover; again we'll look at a slight variation on the original problem. We're going to find:

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{1 / 3}}
$$

This limit is of the form $\frac{\infty}{\infty}$, so we apply l'Hôpital's rule to find:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{1 / 3}} & =\lim _{x \rightarrow \infty} \frac{1 / x}{\frac{1}{3} x^{-2 / 3}} \\
& =\lim _{x \rightarrow \infty} 3 x^{-1 / 3} \\
& =0
\end{aligned}
$$

We conclude that $\ln x$ grows more slowly as x approaches infinity than $x^{1 / 3}$ or any positive power of x. In other words, $\ln x$ increases very slowly.

Question: When we discussed extensions of l'Hôpital's rule, we learned that we're allowed to change some hypotheses. How many hypotheses can we change at once?

Answer: We can make any or all of the three changes listed. However, $\frac{f(a)}{g(a)}$ must always be of the form $\frac{\infty}{\infty},-\frac{\infty}{\infty}$, or $\frac{0}{0}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

