Rate of Growth of e^{px}

When we looked at $\lim_{x\to 0^+} x \ln x$ we found that the value of the limit was 0, so x shrinks to 0 faster than $\ln x$ grows to negative infinity. The next two examples illustrate similar rate properties, which will be important when we study improper integrals and elsewhere.

Example: $\lim_{x\to\infty} xe^{-px}$, (p>0)

The expression xe^{-px} is a product, not a ratio, so we need to rewrite it before we use l'Hôpital's rule. We choose to rewrite it as $\frac{x}{e^{px}}$. This is of the form $\frac{\infty}{\infty}$, so we can use l'Hôpital's rule to calculate:

$$\lim_{x \to \infty} x e^{-px} = \lim_{x \to \infty} \frac{x}{e^{px}}$$
$$= \lim_{x \to \infty} \frac{1}{p e^{px}} \qquad (l'Hop)$$
$$= \frac{1}{\infty}$$
$$= 0.$$

We conclude that when p > 0, x grows more slowly than e^{px} as x goes to infinity.

Example: $\lim_{x\to\infty} \frac{e^{px}}{x^{100}}$ (p>0)

This example doesn't give us much more information, but it's good practice. The value of this limit gives us information about the relative rates of growth of e^{px} and x^{100} .

The expression $\lim_{x\to\infty} \frac{e^{px}}{x^{100}}$ is of the form $\frac{\infty}{\infty}$, so we can use l'Hôpital's rule again. In fact, there are two ways we could use l'Hôpital's rule. The slow way looks like:

$$\lim_{x \to \infty} \frac{e^{px}}{x^{100}} = \lim_{x \to \infty} \frac{pe^{px}}{100x^{99}} \quad (l'Hop)$$
$$= \lim_{x \to \infty} \frac{p^2 e^{px}}{100 \cdot 99x^{98}} \quad (l'Hop)$$
$$= \lim_{x \to \infty} \frac{p^3 e^{px}}{100 \cdot 99 \cdot 98x^{97}} \quad (l'Hop)$$
$$:$$

We could apply l'Hôpital's rule 100 times and we'd eventually get an answer. The clever way is to rewrite the expression as follows:

$$\lim_{x \to \infty} \frac{e^{px}}{x^{100}} = \left(\lim_{x \to \infty} \frac{e^{px/100}}{x}\right)^{100}$$

$$= \left(\lim_{x \to \infty} \frac{\frac{p}{100} e^{px/100}}{1}\right)^{100} \quad (l'\text{Hop})$$
$$= \left(\lim_{x \to \infty} \frac{p \cdot e^{px/100}}{100}\right)^{100}$$
$$= \infty$$

In this example $\lim_{x \to a} \frac{f'(a)}{g'(a)} = \infty$, another possible outcome of l'Hôpital's rule. We conclude that e^{px} grows faster than x^{100} when p is positive. In fact, e^{px} grows faster than any polynomial in x; exponential functions grow faster than powers of x. MIT OpenCourseWare http://ocw.mit.edu

18.01SC Single Variable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.