Rate of Growth of $e^{p x}$

When we looked at $\lim _{x \rightarrow 0^{+}} x \ln x$ we found that the value of the limit was 0 , so x shrinks to 0 faster than $\ln x$ grows to negative infinity. The next two examples illustrate similar rate properties, which will be important when we study improper integrals and elsewhere.

Example: $\lim _{x \rightarrow \infty} x e^{-p x}, \quad(p>0)$
The expression $x e^{-p x}$ is a product, not a ratio, so we need to rewrite it before we use l'Hôpital's rule. We choose to rewrite it as $\frac{x}{e^{p x}}$. This is of the form $\frac{\infty}{\infty}$, so we can use l'Hôpital's rule to calculate:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x e^{-p x} & =\lim _{x \rightarrow \infty} \frac{x}{e^{p x}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{p e^{p x}} \quad \text { (l'Hop) } \\
& =\frac{1}{\infty} \\
& =0
\end{aligned}
$$

We conclude that when $p>0, x$ grows more slowly than $e^{p x}$ as x goes to infinity.

Example: $\lim _{x \rightarrow \infty} \frac{e^{p x}}{x^{100}} \quad(p>0)$
This example doesn't give us much more information, but it's good practice. The value of this limit gives us information about the relative rates of growth of $e^{p x}$ and x^{100}.

The expression $\lim _{x \rightarrow \infty} \frac{e^{p x}}{x^{100}}$ is of the form $\frac{\infty}{\infty}$, so we can use l'Hôpital's rule again. In fact, there are two ways we could use l'Hôpital's rule. The slow way looks like:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{e^{p x}}{x^{100}} & =\lim _{x \rightarrow \infty} \frac{p e^{p x}}{100 x^{99}} \quad \text { (l'Hop) } \\
& =\lim _{x \rightarrow \infty} \frac{p^{2} e^{p x}}{100 \cdot 99 x^{98}} \quad \text { (l'Hop) } \\
& =\lim _{x \rightarrow \infty} \frac{p^{3} e^{p x}}{100 \cdot 99 \cdot 98 x^{97}} \quad \text { (l'Hop) }
\end{aligned}
$$

We could apply l'Hôpital's rule 100 times and we'd eventually get an answer.
The clever way is to rewrite the expression as follows:

$$
\lim _{x \rightarrow \infty} \frac{e^{p x}}{x^{100}}=\left(\lim _{x \rightarrow \infty} \frac{e^{p x / 100}}{x}\right)^{100}
$$

$$
\begin{aligned}
& =\left(\lim _{x \rightarrow \infty} \frac{\frac{p}{100} e^{p x / 100}}{1}\right)^{100} \quad \text { (l'Hop) } \\
& =\left(\lim _{x \rightarrow \infty} \frac{p \cdot e^{p x / 100}}{100}\right)^{100} \\
& =\infty
\end{aligned}
$$

In this example $\lim _{x \rightarrow a} \frac{f^{\prime}(a)}{g^{\prime}(a)}=\infty$, another possible outcome of l'Hôpital's rule. We conclude that $e^{p x}$ grows faster than x^{100} when p is positive. In fact, $e^{p x}$ grows faster than any polynomial in x; exponential functions grow faster than powers of x.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

