Rate of Growth of $\ln x$

This expression is in indeterminate form but looks like it might be the wrong type. This isn't a fraction, so we have to think about how to apply l'Hôpital's rule.

In the expression, the factor x is approaching 0 while the factor $\ln x$ is approaching negative infinity.

$$
\lim _{x \rightarrow 0^{+}} \underbrace{x}_{\rightarrow 0} \underbrace{\ln x}_{\rightarrow-\infty}
$$

We're multiplying a number that's getting smaller and smaller by one that's getting larger and larger; the result could be really large or really small, depending on rates of growth.

The first step in finding the limit is to rewrite the expression as a ratio, rather than as a product. We'll choose to write it as:

$$
x \ln x=\frac{\ln x}{1 / x}
$$

This is an expression of the type $\frac{-\infty}{\infty}$, which is one of the forms we can apply l'Hôpital's rule to. Let's do that:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln x & =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x} \\
& =\lim _{x \rightarrow 0^{+}}-x \\
& =0
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}} \quad \text { (l'Hop) }
$$

We conclude that x goes to 0 faster than $\ln x$ goes to negative infinity, and so the limit of the product is 0 . You might not have been able to guess this in advance.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

