
Polar Coordinates and Conic Sections 

Suppose we want to graph the curve described by: 

1 
r = . 

1 + 2 cos θ 

Again we start by plotting some points on this curve: 
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By using the equations: 

x = r cos θ, y = r sin θ 

we can convert these polar coordinates to rectangular coordinates, show in Fig
ure 1. For example, when θ = 2

π we know that r = 1 and so: 

x = r cos θ = 0 

y = r sin θ = −1 

(1
3
, 0)

(0, 1)

(0,−1)

1 
Figure 1: Rectangular coordinates of points on the curve r = . 

1 + 2 cos θ 
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line in Figure 1. 
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It’s possible for the denominator to be 0: 

1 + 2 cos θ = 0 

2 cos θ = −1 
1 

cos θ = 
2

− � � 
1 

θ = arccos − 
2 

2π 
θ = ± 
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The radius r goes to infinity as θ approaches 
extend infinitely far in those directions. 

2π 
3 and − π2

3 , so the curve will 
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Figure 2: Graph of the curve r = . 

1 + 2 cos θ 

This is as much as we’ll be able to figure out about the graph without 
converting its equation from polar to rectangular coordinates. Let’s do that. 

Rectangular Equation 

1 
What is the rectangular (x, y) equation for r = ? 

1 + 2 cos θ 
To answer this question we could use our formula x = r cos θ, y = r sin θ and 

then try to simplify, but if we’re clever we can manipulate our original formula 
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until it appears in terms of x and y. 

1 
r = 

1 + 2 cos θ 
r + 2r cos θ = 1 

r = 1 − 2r cos θ 

r = 1 − 2x 

Multiplying both sides by the denominator simplified the expression and allowed 
us to make the substitution x = r cos θ. The variable θ no longer appears. 

If we square both sides of this new equation we can get rid of the variable r 
as well: 

r = 1 − 2x 

r 2 = (1 − 2x)2 

x 2 + y 2 = 1 − 4x + 4x 2 

−3x 2 + y 2 + 4x − 1 = 0 

This is a standard calculation with a standard result; whenever we start with 
1 1 

have or we’ll end up with an equation like this. 
a + b cos θ a + b sin θ 

Because the signs of the coefficients of x2 and y2 are different, this is the 
equation of a hyperbola. (If the signs match, the equation describes an ellipse; 
if one of these coefficients is 0 the graph is a parabola.) We can now conclude 
that the dotted lines in Figure 1 are asymptotes of the graph. 

To complete our understanding of the curve r = 1 we ask what hap1+2 cos θ 
pens when the denominator 1 + 2 cos θ is negative? 

Since we know that the equation for the curve in rectangular coordinates is 
−3x2 + y2 +4x − 1 = 0, we can guess that for 3π < θ < 5π the curve must trace 2 2 
out the other branch of the hyperbola. 

Connection to Kepler’s Second Law 

There is a beautiful connection between the basic formula for area and these 
types of curve. 

As you may know, the trajectories of comets are hyperbolas. Ellipses are the 
trajectories of planets or asteroids. When you represent hyperbolas and ellipses 
in polar coordinates like this, it turns out that: 

r = 0 is the focus of the hyperbola. 

Polar coordinates are the natural way to express the trajectory of a planet or 
comet if you want the center of gravity (the sun) to be at the origin. 

The formula 

dA =
1 
r 2 dθ 

2 
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Figure 3: Both branches of the curve r = . 

1 + 2 cos θ 

is a central formula in astronomy. Kepler’s second law says that a line joining 
a comet or planet to the sun sweeps out equal areas in equal time periods. In 
other words, the rate of change of area swept out is constant: 

dA 
= constant. 

dt 

This tells us that as a comet travels around the sun, its speed varies, and 
varies predictably. Since we know dA = 2

1 r2 dθ, we can conclude that: 

dA 1 2 dθ 
= r . 

dt 2 dt 

Combining this with Kepler’s second law we get: 

1 2 dθ 
r = constant. 

2 dt 

In modern-day terms, what this formula says is that angular momentum is 
conserved. The objects Kepler was observing weren’t subject to friction or air 
resistance, but this equation is the same one used to describe why a top keeps 
spinning after you let it go, or why an ice skater spins faster when she pulls her 
arms and legs in. 
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