Graph of $r=2 a \cos \theta$

Let's get some more practice in graphing and polar coordinates. We just found the area enclosed by the curve $r=2 a \cos \theta$ for $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. What happens when θ doesn't lie in this range?

Figure 1: Off center circle $r=2 a \cos \theta$.
When $\frac{\pi}{2}<\theta<\pi, r$ is negative. For example, when $\theta=\frac{3 \pi}{4}, \cos \theta=-\frac{\sqrt{2}}{2}$ and $r=-a \sqrt{2}$. If we move a distance of negative $a \sqrt{2}$ in the direction of angle $\frac{3 \pi}{4}$ we arrive at the point $\left(-a \sqrt{2}, \frac{3 \pi}{4}\right)$, which is $(a,-a)$ in rectangular coordinates.

In fact, because we know that the points on the curve must have the property:

$$
(x-a)^{2}+y^{2}=a^{2}
$$

in rectangular coordinates, we know that as θ increases, the point $(2 a \cos \theta, \theta)$ must remain on that same curve. As θ ranges from 0 to 2π (or from $-\frac{\pi}{2}$ to $\frac{3 \pi}{2}$), the point $(2 a \cos \theta, \theta)$ travels around the circle twice.

A common mistake is to choose the wrong limits of integration and count the same area twice, or cancel a positive area with an overlapping negative one.

Question: Can you find the area using the limits of integration 0 and π ?
Answer: Yes. The integral $\int_{0}^{\pi} \frac{1}{2}(2 a \cos \theta)^{2} d \theta$ gives a correct answer.
However, $r=2 a \cos \theta, 0 \leq \theta \leq \pi$ is an awkward way to describe a circle. As θ ranges from 0 to $\frac{\pi}{2}, r$ is positive and (r, θ) moves along the top half of the circle. As θ sweeps through the second quadrant $\left(\frac{\pi}{2}<\theta<\pi\right), r$ is negative and so the curve appears in the fourth quadrant.

When we work with negative values of r it's easy to get confused, so when possible it's a good idea to choose our limits of integration so that r is positive.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

