Area of an Off Center Circle

Let's find the area in polar coordinates of the region enclosed by the curve $r=$ $2 a \cos \theta$. We've previously shown that this curve describes a circle with radius a centered at $(a, 0)$. In rectangular coordinates its equation is $(x-a)^{2}+y^{2}=a^{2}$.

Figure 1: Off center circle $r=2 a \cos \theta$.
We're going to integrate an infintessimal amount of area $d A$. The integral will go from $\theta_{1}=-\frac{\pi}{2}$ to $\theta_{2}=\frac{\pi}{2}$. We could find these limits by looking at Figure 1; to draw the circle we might start by moving "down" at angle $-\frac{\pi}{2}$. As we move along the bottom of the circle toward $(2 a, 0)$ the angle increases to 0 , and as we trace out the top of the circle we're moving from angle 0 to angle $\frac{\pi}{2}$ ("up").

We might also find the limits of integration by looking at the formula and realizing that the cosine function is positive for $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$. When $\theta= \pm \frac{\pi}{2}$, $r=2 a \cos \theta$ is 0 , so the two ends of the curve meet at the origin.

Our infinitessimal unit of area is $d A=\frac{1}{2} r^{2} d \theta$, so:

$$
\begin{aligned}
A & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} r^{2} d \theta \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2}(2 a \cos \theta)^{2} d \theta \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 a^{2} \cos ^{2} \theta d \theta \\
& =2 a^{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta \quad \text { (half angle formula) } \\
& =2 a^{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+\cos 2 \theta}{2} d \theta \\
& =a^{2}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =a^{2}\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right) \\
& =\pi a^{2}
\end{aligned}
$$

We know that the area of a circle of radius a is πa^{2}; our answer is correct.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

