Polar Coordinates and Area

How would we calculate an area using polar coordinates? Our basic increment of area will be shaped like a slice of pie. The slice of pie shown in Figure 1 has

Figure 1: A slice of pie with radius r and angle $d \theta$.
a piece of a circular arc along its boundary with arc length $r d \theta$. We'll say that $d A$ equals the area of the slice.

How do we express $d A$ in terms of r and θ ? The total area of the pie this was sliced from is πr^{2}. To find the area $d A$ we note that the proportion of the total area covered equals the proportion of arc length covered. So:

$$
\begin{aligned}
\frac{d A}{\pi r^{2}} & =\frac{d \theta}{2 \pi r} \\
d A & =\frac{r d \theta}{2 \pi r} \cdot \pi r^{2} \\
d A & =\frac{1}{2} r^{2} d \theta
\end{aligned}
$$

This is the basic formula for an increment of area in polar coordinates.
We want to use polar coordinates to compute areas of shapes other than circles. In this case r will be a function of θ. The distance between the curve and the origin changes depending on what angle our ray is at. Our center point of reference is the origin; we think of rays emerging from the origin at some angle $\theta ; r(\theta)$ is, roughly, the distance we must travel along that ray to get to the curve.

To find the area of a shape like this, we break it up into circular sectors with angle $\Delta \theta$. Since the curve is not a circle the circular sectors won't perfectly cover the region, so we just approximate the area of a wedge between the curve and the origin by:

$$
\Delta A \approx \frac{1}{2} r^{2} \Delta \theta
$$

If we take the limit as $\Delta \theta$ approaches zero our sum of sector areas will approach

Figure 2: A slice from an oddly shaped pie.
the exact area and we get:

$$
d A=\frac{1}{2} r^{2} d \theta
$$

This is very similar to letting Δx go to zero in a Riemann sum of rectangle areas.

In the limit, we have:

$$
A=\int_{\theta_{1}}^{\theta_{2}} \frac{1}{2} r^{2} d \theta
$$

Remember that we're assuming r is a function of θ.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

