Equation of an Off-Center Circle

This is a standard example that comes up a lot. Circles are easy to describe, unless the origin is on the rim of the circle. We'll calculate the equation in polar coordinates of a circle with center $(a, 0)$ and radius $(2 a, 0)$. You should expect to repeat this calculation a few times in this class and then memorize it for multivariable calculus, where you'll need it often.

Figure 1: Off center circle through $(0,0)$.
In rectangular coordinates, the equation of this circle is:

$$
(x-a)^{2}+y^{2}=a^{2} .
$$

We could plug in $x=r \cos \theta, y=\sin \theta$ to convert to polar coordinates, but there's a faster way. We start by expanding and simplifying:

$$
\begin{aligned}
(x-a)^{2}+y^{2} & =a^{2} \\
x^{2}-2 a x+a^{2}+y^{2} & =a^{2} \\
x^{2}-2 a x+y^{2} & =0 \\
\left(x^{2}+y^{2}\right)-2 a x & =0 \\
r^{2}-2 a r \cos \theta & =0 \\
r^{2} & =2 a r \cos \theta \\
\Longrightarrow r & =2 a \cos \theta \quad(\text { or } r=0) .
\end{aligned}
$$

We used the facts that $x^{2}+y^{2}=r^{2}$ and $x=r \cos \theta$ to conclude that there were two values of r that satisfy this equation; $r=2 a \cos \theta$ and $r=0$. These are the equations describing r in terms of θ that describe this circle in polar coordinates.

In order to use the equation $r=2 a \cos \theta$, we need to figure out the appropriate range of values for θ. By looking at the graph we see that $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$. Our final equation is:

$$
r=0 \quad \text { or } \quad r=2 a \cos \theta, \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2} .
$$

Figure 2: Off center circle in polar coordinates.

To check our work, let's find some points on this curve:

- At $\theta=0, r=2 a$ and so $x=2 a$ and $y=0$.
- At $\theta=\frac{\pi}{4}, r=2 a \cos \frac{\pi}{4}=a \sqrt{2}$. Hence $x=a$ and $y=a$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

