Translating $y=1$ into Polar Coordinates

We'll take a simple description from rectangular coordinates, $y=1$, and translate it into polar coordinates. To do this, we plug in the (definitive) formula $y=r \sin \theta$.

$$
\begin{aligned}
y & =r \sin \theta \\
1 & =r \sin \theta \\
r & =\frac{1}{\sin \theta}
\end{aligned}
$$

In rectangular coordinates the line has equation $y=1$. In polar coordinates its equation is $r=\frac{1}{\sin \theta}$.

Figure 1: $r=\frac{1}{\sin \theta}$
As indicated in Figure 1, for different values of θ points on the horizontal line are different distances r from the origin. That distance r is $\frac{1}{\sin \theta}$.

We need one more piece of information to complete this problem; what is the range of θ ? When $\theta=0$ the denominator of the expression describing r is 0 ; this corresponds to one end of the line. As θ increases from 0 to π, r decreases to 1 at $\theta=\frac{\pi}{2}$ and then increases to infinity again.

Our final answer is:

$$
r=\frac{1}{\sin \theta}, \quad 0<\theta<\pi .
$$

Question: Is it typical to express r as a function of θ ? Does it matter?
Answer: In this course our answers will almost always describe r as a function of θ, but it's not required. We do it this way because we like:

$$
r=\frac{1}{\sin \theta}
$$

better than:

$$
\theta=\sin ^{-1}\left(\frac{1}{r}\right) .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

