Remarks on Notation

We've been working with notation like $d s^{2}$ for a while now; what does this mean, what operations can we legitimately perform with these infinitesimals, and what isn't valid?

The basis for our arc length formula is that:

$$
\Delta s^{2} \approx \Delta x^{2}+\Delta y^{2}
$$

We'll now see how our formula:

$$
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

for parametric arc length can be more rigorously derived from the same basis.
Because Δt is not quite equal to 0 , we can start by dividing both sides of the formula by Δt^{2} :

$$
\begin{aligned}
\Delta s^{2} & \approx \Delta x^{2}+\Delta y^{2} \\
\left(\frac{\Delta s}{\Delta t}\right)^{2} & \approx\left(\frac{\Delta x}{\Delta t}\right)^{2}+\left(\frac{\Delta y}{\Delta t}\right)^{2}
\end{aligned}
$$

Finally, we take the limit as t goes to zero of both sides to conclude that:

$$
\left(\frac{d s}{d x}\right)^{2}=\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}
$$

(This is what derivatives are all about.)
Warning: Never write $\left(\frac{d x}{d t}\right)^{2}=\left(x^{\prime}(t)\right)^{2}$ as $\frac{d x^{2}}{d t^{2}}$. If you do, it could be incorrectly interpreted to mean $\frac{d^{2} x}{d t^{2}}=x^{\prime \prime}(t)$.

Another unfortunate thing is that we write $\sin ^{2} x$ to mean $(\sin x)^{2}$, perhaps because typographers are lazy. There is inconsistency in mathematical notation, and we have to work with the conventions that exist.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

