Arc Length of Parametric Curves

We've talked about the following parametric representation for the circle:

$$
\begin{aligned}
& x=a \cos t \\
& y=a \sin t
\end{aligned}
$$

We noted that $x^{2}+y^{2}=a^{2}$ and that as t increases the point $(x(t), y(t))$ moves around the circle in the counterclockwise direction.

Figure 1: The parametrization $(a \cos t, a \sin t)$ has a counterclockwise trajectory.
We'll now learn how to compute the arc length of the path traced out by this trajectory; the result should match our previous result for the arc length of a circular curve.

Recall our basic relationship:

$$
d s^{2}=d x^{2}+d y^{2} \quad \text { or } \quad d s=\sqrt{d x^{2}+d y^{2}} .
$$

We incorporate parameter t into this formula as follows:

$$
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

So, to compute the infinitesimal arc length $d s$ we start by computing $\frac{d x}{d t}$ and $\frac{d y}{d t}$:

$$
\frac{d x}{d t}=-a \sin t \quad \text { and } \quad \frac{d y}{d t}=a \cos t .
$$

Hence,

$$
d s=\sqrt{(-a \sin t)^{2}+(a \cos t)^{2}} d t
$$

$$
\begin{aligned}
& =\sqrt{a^{2}\left(\sin ^{2} t+\cos ^{2} t\right)} d t \\
& =\sqrt{a^{2} \cdot 1} d t \\
d s & =a d t
\end{aligned}
$$

From this we conclude that the speed at which the point moves around the circle is: $\frac{d s}{d t}=a$. Because the speed is constant, we say that the point is moving with uniform speed.

Parametrizations such as:

$$
\begin{aligned}
x & =a \cos k t \\
y & =a \sin k t
\end{aligned}
$$

are common in math and physics classes. Again this is a parametrization of the circle, but this time the point is moving with uniform speed $a k$. (We'll assume that both a and k are positive.)

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

