Parametric Curve

We're going to continue to work in three dimensional space, moving on to parametric equations; in particular we'll discuss parametric curves. This is another topic that will help us prepare for multivariable calculus; it's the beginning of the transition to multivariable thinking.

We're going to consider curves that are described by x being a function of t and y being a function of t.

$$
\begin{aligned}
& x=x(t) \\
& y=y(t)
\end{aligned}
$$

The variable t is called a parameter. The easiest way to think of parametric curves is as t equaling time and the position $(x(t), y(t))$ describing a trajectory in the plane.

The point $(x(0), y(0))$ describes a position at time $t=0$. The point $(x(1), y(1))$ describes a later position at time $t=1$. When we draw the trajectory it's a good idea to draw arrows on the curve that show what direction $(x(t), y(t))$ moves in as t increases.

Our first example will be to figure out what sort of curve is described by:

$$
\begin{aligned}
& x=a \cos t \\
& y=a \sin t
\end{aligned}
$$

To do this we want to figure out what equation describes the curve in rectangular coordinates. Ideally, we quickly realize that:

$$
\begin{aligned}
x^{2}+y^{2} & =(x(t))^{2}+(y(t))^{2} \\
& =a^{2} \cos ^{2} t+a^{2} \sin ^{2} t \\
x^{2}+y^{2} & =a^{2}
\end{aligned}
$$

The curve is a circle with radius a.
Another thing to keep track of is which direction we're going on this circle. There's more to this curve than just its shape; there's also where we are at what time, as with the trajectory of a planet. We'll figure this out by plotting a few points:

When $t=0,(x, y)=(a \cos 0, a \sin 0)=(a, 0)$.
When $t=\frac{\pi}{2},(x, y)=\left(a \cos \frac{\pi}{2}, a \sin \frac{\pi}{2}\right)=(0, a)$.
We deduce that the trajectory moves counterclockwise about the circle of radius a centered at the origin. (See Figure 1.)

Next time we'll learn to keep track of the arc length and to understand how fast $(x(t), y(t))$ is changing.

Figure 1: Parametrized circle.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

