Introduction to Arc Length

Now that we're done with techniques of integration, we'll return to doing some geometry; this will lead to some of the tools you'll need in multivariable calculus. Our first topic is arc length, which is calculated using another cumulative sum which will have an associated story and picture.

Suppose you have a roadway with mileage markers $s_{0}, s_{1}, s_{2}, \ldots, s_{n}$ along the road. The distance traveled along the road - the arc length - is described by this parameter s. If we look at the road as a graph, we can let a be the x coordinate of the first point s_{0} on the curve or road and b be the x coordinate of the end point s_{n} of the curve, and x_{i} as the x-coordinate of s_{i}. This is reminiscent of what we did with Riemann sums.

Figure 1: Straight line approximation of arc length.
We'll approximate the length s of the curve by summing the straight line distances between the points s_{i}. As n increases and the distance between the s_{i} decreases, the straight line distance from s_{i} to s_{i-1} will get closer and closer to the distance Δs along the curve. We can use the Pythagorean theorem to see that that distance equals $\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$. In other words:

$$
(\Delta s)^{2} \approx \overbrace{(\Delta x)^{2}+(\Delta y)^{2}}^{(\text {hypotenuse) }}
$$

We apply the tools of calculus to this estimate; in the infinitesimal this is exactly correct:

$$
(d s)^{2}=(d x)^{2}+(d y)^{2}
$$

In the future we'll omit the parentheses and write this as $d s^{2}=d x^{2}+d y^{2}$. These are squares of differentials; try not to mistake them for differentials of squares.

The next thing we do is take the square root:

$$
d s=\sqrt{d x^{2}+d y^{2}}
$$

This is the formula that Professor Jerison has memorized, but you can rewrite it in several useful ways. For instance, you can factor out the $d x$ to get:

$$
\frac{d s}{d x}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
$$

This is the form we'll be using today; when we add up all the infinitesimal values of $d s$ we'll find that:

$$
\begin{aligned}
\text { Arc Length } & =\text { distance along the curve from } s_{0} \text { to } s_{n} \\
& =\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int d s \\
& =\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x \quad(y=f(x))
\end{aligned}
$$

Question: Is $f^{\prime}(x)^{2}$ equal to $f^{\prime \prime}(x)$?
Answer: No. Suppose $f(x)=x^{2}$. Then $f^{\prime}(x)=2 x, f^{\prime}(x)^{2}=4 x^{2}$ and $f^{\prime \prime}(x)=2$.

Question: What are the limits of integration on $\int d s$, above?
Answer: If you're integrating with respect to s you'll start at s_{0} and end at s_{n}. If you're integrating with respect to a different variable you'll have different limits of integration, as happens when we change variables. The values s_{0} and s_{n} are mileage markers along the road; they're not the same as a and b. When we measure arc length, remember that we're measuring distance along a curved path.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

