Another Reduction Formula: $\int x^{n} e^{x} d x$

To compute $\int x^{n} e^{x} d x$ we derive another reduction formula. We could replace e^{x} by $\cos x$ or $\sin x$ in this integral and the process would be very similar.

Again we'll use integration by parts to find a reduction formula. Here we choose

$$
u=x^{n}
$$

because

$$
u^{\prime}=n x^{n-1}
$$

is a simpler (lower degree) function. If $u=x^{n}$ then we'll have to have

$$
v^{\prime}=e^{x}, \quad v=e^{x} .
$$

(Note that the antiderivative of v is no more complicated than v^{\prime} was - another indication that we've chosen correctly.)

On the other hand, if we used $u=e^{x}$, then $u^{\prime}=e^{x}$ would not be any simpler. Performing the integration by parts we get:

$$
\int \underbrace{x^{n} e^{x}}_{u v^{\prime}} d x=\underbrace{x^{n} e^{x}}_{u v}-\int \underbrace{x^{n-1} e^{x}}_{u^{\prime} v} d x .
$$

If:

$$
G_{n}(x)=\int x^{n} e^{x} d x
$$

then we get the reduction formula:

$$
G_{n}(x)=x^{n} e^{x}-n G_{n-1}(x) .
$$

Let's illustrate this by computing a few integrals. First we directly compute:

$$
G_{0}(x)=\int x^{0} e^{x} d x=e^{x}+c .
$$

Now we can use the reduction formula to conclude that:

$$
\begin{aligned}
G_{1}(x) & =x e^{x}-G_{0}(x) \\
& =x e^{x}-e^{x}+c .
\end{aligned}
$$

So $\int x e^{x} d x=x e^{x}-e^{x}+c$.
Question: How do you know when this method will work?
Answer: Good question! The answer is "only through experience and practice". To use this method on an integrand, we need one factor u of the integrand to get simpler when we differentiate and the other factor v not to get more complicated when we integrate.

We've seen how to use integration by parts to derive reduction formulas. We could also find these formulas by advanced guessing - guess what the formula should be and then check it. Either method is valid.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

