A Reduction Formula

When using a reduction formula to solve an integration problem, we apply some rule to rewrite the integral in terms of another integral which is a little bit simpler. We may have to rewrite that integral in terms of another integral, and so on for n steps, but we eventually reach an answer.

For example, to compute:

$$
\int(\ln x)^{n} d x
$$

we repeat the integration by parts from the previous example $n-1$ times, until we're just calculating $\int(\ln x) d x$.

For our first step we use:

$$
\begin{aligned}
& u=(\ln x)^{n} \\
& u^{\prime}=n(\ln x)^{n-1} \frac{1}{x} \\
& v=x \\
& v^{\prime}=1
\end{aligned}
$$

Then:

$$
\begin{aligned}
\int(\ln x)^{n} d x & =x(\ln x)^{n}-n \int(\ln x)^{n-1} \frac{1}{x} x d x \\
& =x(\ln x)^{n}-n \int(\ln x)^{n-1} d x
\end{aligned}
$$

So, if:

$$
F_{n}(x)=\int(\ln x)^{n} d x
$$

then we've just shown that:

$$
F_{n}(x)=x(\ln x)^{n}-n F_{n-1}(x)
$$

This is an example of a reduction formula; by applying the formula repeatedly we can write down what $F_{n}(x)$ is in terms of $F_{1}(x)=\int \ln x d x$ or $F_{0}(x)=\int 1 d x$.

We illustrate the use of a reduction formula by applying this one to the preceding two examples. We start by computing $F_{0}(x)$ and $F_{1}(x)$:

$$
\begin{aligned}
F_{0}(x) & =\int(\ln x)^{0} d x=x+c \\
F_{1}(x) & =x(\ln x)^{1}-1 F_{0}(x) \quad \text { (use reduction formula) } \\
& =x \ln x-x+c \quad(\text { Example } 1) \\
F_{2}(x) & =x(\ln x)^{2}-2 F_{1}(x) \quad \text { (use reduction formula) } \\
& =x(\ln x)^{2}-2(x \ln x-x)+c \\
& =x(\ln x)^{2}-2 x \ln x+2 x+c \quad \text { (Example 2.) }
\end{aligned}
$$

This is how reduction formulas work in general.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

