Example: $\int(\ln x)^{2} d x$
To finish learning the method of integration by parts we just need a lot of practice. To this end, we'll do two slightly more complicated examples.

To integrate:

$$
\int(\ln x)^{2} d x
$$

assign:

$$
\begin{array}{cl}
u=(\ln x)^{2} & u^{\prime}=2(\ln x) \frac{1}{x} \\
v=x & v^{\prime}=1 .
\end{array}
$$

When we differentiate u we get something simpler, which is a good start. Plugging u and v in to the formula for integration by parts we get:

$$
\begin{aligned}
\int \underbrace{(\ln x)^{2}}_{u v^{\prime}} d x & =\underbrace{(\ln x)^{2} \cdot x}_{u v}-\int \underbrace{2 \ln x}_{u^{\prime}} \frac{1}{x} \underbrace{x}_{v} d x \\
& =x(\ln x)^{2}-2 \int \ln x d x .
\end{aligned}
$$

We haven't solved the problem, but we're back to the previous case; we recently computed that $\int \ln x d x=x \ln x-x+c$. So we have:

$$
\int(\ln x)^{2} d x=x(\ln x)^{2}-2 \underbrace{(x \ln x-x)}_{\int \ln x d x}+c .
$$

As we'll see in the next example, this is typical. Integration by parts frequently involves replacing a "hard" integral by an easier one.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

