Introduction to Integration by Parts

Unlike the previous method, we already know everything we need to to understand integration by parts. Integration by parts is like the reverse of the product formula:

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime}
$$

combined with the fundamental theorem of calculus.
To derive the formula for integration by parts we just rearrange and integrate the product formula:

$$
\begin{aligned}
(u v)^{\prime} & =u^{\prime} v+u v^{\prime} \\
u v^{\prime} & =(u v)^{\prime}-u^{\prime} v \\
\int u v^{\prime} d x & =\int(u v)^{\prime} d x-\int u^{\prime} v d x \\
\int u v^{\prime} d x & =u v-\int u^{\prime} v d x
\end{aligned}
$$

The integration by parts formula is:

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

For definite integrals, it becomes:

$$
\int_{a}^{b} u v^{\prime} d x=\left.u v\right|_{a} ^{b}-\int_{a}^{b} u^{\prime} v d x
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

