Long Division

When you're integrating a rational expression $\frac{P(x)}{Q(x}$, what happens if the degree of P is greater than or equal to the degree of Q ? We can think of this as an improper fraction, similar to fractions like $\frac{5}{4}$ and $\frac{8}{3}$.

Example:

$$
\frac{x^{3}}{(x-1)(x+2)}
$$

The numerator has degree 3 and the denominator has degree 2 ; our usual method is not going to work here.

The first step to simplifying this turns out to be to reverse our usual step 1 ; we don't want the denominator factored, we want it expanded, or multiplied out:

$$
\frac{x^{3}}{(x-1)(x+2)}=\frac{x^{3}}{x^{2}+x-2} .
$$

Our next step is to use long division to convert an improper fraction into a proper fraction:

$$
x-1
$$

$\left.x^{2}+x-2\right) \quad x^{3}$

$$
\begin{aligned}
& -x^{3}-x^{2}+2 x \\
& -x^{2}+2 x \\
& \frac{x^{2}+x-2}{3 x-2}
\end{aligned}
$$

You may recall from grade school that $x-1$ is called the quotient and $3 x-2$ is the remainder. We use this result to rewrite our rational expression as follows:

$$
\frac{x^{3}}{(x-1)(x+2)}=\underbrace{x-1}_{\text {easy }}+\underbrace{\frac{3 x-2}{x^{2}+x-2}}_{\text {use cover-up }}
$$

We could now find the integral of this rational expression if we wished to.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

