Integrate by Partial Fractions

Use the method of partial fractions to compute the integral:

$$
\int \frac{x^{2}+2 x+3}{(x+1)(x+2)(x+3)} d x
$$

Solution

We first check to see if we can factor the numerator to cancel any terms in the denominator; we can't. Since all the terms in the denominator are linear, we need not try to factor them. The numerator is a second degree polynomial and the denominator is third degree, so we do not need to perform any long division of polynomials.

We set up the partial fractions decomposition as follows:

$$
\frac{x^{2}+2 x+3}{(x+1)(x+2)(x+3)}=\frac{A}{x+1}+\frac{B}{x+2}+\frac{C}{x+3} .
$$

Now we apply the cover-up method, starting by solving for A :

$$
\frac{x^{2}+2 x+3}{x+1(x+2)(x+3)}=\frac{A}{x+\frac{B}{x+2}+\frac{C}{x+3} .}
$$

We cover up $x+1$ and any expression that does not contain $x+1$, then plug in $x=-1$; the value that makes $x+1$ equal 0 . We get:

$$
\frac{(-1)^{2}+2 \cdot(-1)+3}{(-1+2)(-1+3)}=1=A
$$

We repeat this process for B and C :

$$
\begin{aligned}
\frac{x^{2}+2 x+3}{(x+1)(-2)(x+3)} & =\frac{A}{x+1}+\frac{B}{x+2}+\frac{C}{x+3} \\
\frac{(-2)^{2}+2(-2)+3}{(-2+1)(-2+3)} & =B \\
B & =-3 \\
\frac{x^{2}+2 x+3}{(x+1)(x+2)(x+3)} & =\frac{A}{x+1}+\frac{B}{x+2}+\frac{C}{x+3} \\
\frac{(-3)^{2}+2(-3)+3}{(-3+1}-3+2 & =C \\
C & =3
\end{aligned}
$$

We conclude that:

$$
\frac{x^{2}+2 x+3}{(x+1)(x+2)(x+3)}=\frac{1}{x+1}-\frac{3}{x+2}+\frac{3}{x+3} .
$$

If we plug in $x=0$ we get $\frac{1}{2}=1-\frac{3}{2}+1$, so this is probably a correct decomposition.

We can now break this down into three relatively simple integrals. One integration is presented in detail below, using the substitution $u=x+3$; the other two are similar:

$$
\begin{aligned}
\int \frac{3}{x+3} d x & =3 \int \frac{1}{u} d u \\
& =3 \ln |u|+c \\
& =3 \ln |x+3|+c
\end{aligned}
$$

In conclusion,

$$
\begin{aligned}
\int \frac{x^{2}+2 x+3}{(x+1)(x+2)(x+3)} d x & =\int \frac{1}{x+1}-\frac{3}{x+2}+\frac{3}{x+3} d x \\
& =\ln |x+1|-3 \ln |x+2|+3 \ln |x+3|+c
\end{aligned}
$$

We could try to check this by differentiation, but that leads directly to verifying that our partial fractions decomposition is correct - a time consuming task.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

