Partial Fractions

Today we'll learn how to integrate functions of the form:

$$
\frac{P(x)}{Q(x)}
$$

where $P(x)$ and $Q(x)$ are polynomials. Functions of this type are called rational functions. The technique for integrating functions of this type is called the method of partial fractions.

The method of partial fractions works by algebraically splitting $P(x) / Q(x)$ into pieces that are easier to integrate.

Example:

$$
\int\left(\frac{1}{x-1}+\frac{3}{x+2}\right) d x=\ln |x-1|+3 \ln |x+2|+c
$$

That was an easy integral. Next we'll see how the same integral might become difficult; if we add the two fractions together we get the same problem in a more challenging form:

$$
\begin{aligned}
\frac{1}{x-1}+\frac{3}{x+2} & =\frac{1}{x-1} \cdot \frac{x+2}{x+2}+\frac{3}{x+2} \cdot \frac{x-1}{x-1} \\
& =\frac{(x+2)+3(x-1)}{(x-1)(x+2)} \\
& =\frac{4 x-1}{x^{2}+x-2} \\
\int \frac{4 x-1}{x^{2}+x-2} d x & =?
\end{aligned}
$$

This integral is algebraically the same as the one we just computed; that was easy, this one looks harder. The method of partial fractions involves algebraically manipulating integrals like the harder one to make them easier.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

